2 resultados para POST-2015 DEVELOPMENT AGENDA

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A shift in the entrepreneurial landscape is taking place brought about by grassroots innovators with little formal education and technological knowhow, living and working in penurious environments. This research represents an emerging third wave of literature on Bottom of the Pyramid innovation, where products are offered for and by the underserved. Using primary and secondary data derived from four cases of grassroots entrepreneurs in the Indian Subcontinent, the study explores the phenomenon where resource scarce entrepreneurs craft solutions that are environmental friendly, with low overall ownership costs, and use locally available material. We argue that the grassroots phenomenon can be fruitfully exploited to achieve the new Sustainable Development Goals proposed by the UN as a post-2015 strategy for the future of global governance. These innovations might have a tremendous impact not only in terms of serving unmet and ignored consumer needs, but also longer term impacts through enhanced productivity, sustainability, poverty reduction and inclusion promotion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Development of a sheep vertebroplasty model for bioceramic materials assessment Sheep has been widely used as an animal orthopaedic model. Although several studies report anatomic and biomechanical similarities as well as distinctions of ovine lumbar vertebrae when compared to human’s, only a few studies describe its actual use as a vertebroplasty model. Due to distinct anatomic features, sheep lumbar vertebrae pose a challenge when developing a minimally invasive procedure for vertebroplasty material testing, under conditions meant to be the most similar to clinical procedure. The present work describes the development of an appropriate surgical percutaneous vertebroplasty model in the lumbar spine of sheep, applicable in vivo, that minimizes the risk of post-surgical complications. This model was mechanically evaluated ex-vivo regarding its safety, and used to evaluate the injectability and radiopacity of two new bioceramic materials when compared to a commercial bioceramic bone substitute (Cerament™ SpineSupport). Microtomography techniques helped in the development of the model and results assessment. Under fluoroscopic guidance, a defect was created through a bilateral modified parapedicular access in the cranial hemivertebrae of 30 sheep lumbar vertebrae (L4, L5 and L6). The manually drilled defect had an average volume of 1209 ±226 mm3 and allowed the novel materials injection through a standardized injection cannula placed in one of the entrance points. Adequate defect filling was observed with all tested materials. No mechanical failure was observed under loads higher than the physiological.