2 resultados para Oocyte maturation
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
Knowledge of the chemical identity and role of urinary pheromones in fish is scarce, yet it is necessary in order to understand the integration of multiple senses in adaptive responses and the evolution of chemical communication [1]. In nature, Mozambique tilapia (Oreochromis mossambicus) males form hierarchies, and females mate preferentially with dominant territorial males, which they visit in aggregations or leks [2]. Dominant males have thicker urinary bladder muscular walls than subordinates or females and store large volumes of urine, which they release at increased frequency in the presence of subordinate males or preovulatory, but not postspawned, females [3–5]. Females exposed to dominant-male urine augment their release of the oocyte maturation-inducing steroid 17α,20β-dihydroxypregn-4-en-3-one (17,20β-P) [6]. Here we isolate and identify a male Mozambique tilapia urinary sex pheromone as two epimeric (20α- and 20β-) pregnanetriol 3-glucuronates. We show that both males and females have high olfactory sensitivity to the two steroids, which cross-adapt upon stimulation. Females exposed to both steroids show a rapid, 10-fold increase in production of 17,20β-P. Thus, the identified urinary steroids prime the female endocrine system to accelerate oocyte maturation and possibly promote spawning synchrony. Tilapia are globally important as a food source but are also invasive species, with devastating impact on local freshwater ecosystems [7, 8]. Identifying the chemical cues that mediate reproduction may lead to the development of tools for population control [9–11].
Resumo:
Streamflow is considered a driver of inter and intra‐specific life‐history differences among freshwater fish. Therefore, dams and related flow regulation, can have deleterious impacts on their life‐cycles. The main objective of this study is to assess the effects of flow regulation on the growth and reproduction of a non‐migratory fish species. During one year, samples were collected from two populations of Iberian chub, inhabiting rivers with non‐regulated and regulated flow regimes. Flow regulation for water derivation promoted changes in chub’s condition, duration of gonad maturation and spawning, fecundity and oocyte size. However, this non‐migratory species was less responsive to streamflow regulation than a migratory species analysed. Findings from this study are important to understand changes imposed by regulated rivers on fish and can be used as guidelines for flow requirements implementations; RESUMO: O caudal é um dos fatores responsáveis pelo funcionamento dos ciclos de vida das espécies piscícolas dulciaquícolas. As barragens, e a regularização de caudal associada, podem ter impactes nos ciclos de vida destas espécies. O objetivo deste estudo prende‐se com a avaliação dos efeitos da regularização de caudal no crescimento e reprodução de uma espécie piscícola não‐migradora. A análise de amostras recolhidas em populações de escalo do Norte provenientes de dois rios de caudal regularizado e não regularizado, identificaram impactes significativos a nível da condição corporal, da maturação das gónadas e desova, da fecundidade e da dimensão dos oócitos. Esta espécie não‐migradora parece ser menos responsiva à artificialização do caudal que uma espécie migradora previamente analisada. Estes resultados permitem compreender as alterações impostas pela regularização do caudal e podem ser usados em programas de reabilitação fluvial.