4 resultados para Nurse scheduling problem
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
In aircraft components maintenance shops, components are distributed amongst repair groups and their respective technicians based on the type of repair, on the technicians skills and workload, and on the customer required dates. This distribution planning is typically done in an empirical manner based on the group leader’s past experience. Such a procedure does not provide any performance guarantees, leading frequently to undesirable delays on the delivery of the aircraft components. Among others, a fundamental challenge faced by the group leaders is to decide how to distribute the components that arrive without customer required dates. This paper addresses the problems of prioritizing the randomly arriving of aircraft components (with or without pre-assigned customer required dates) and of optimally distributing them amongst the technicians of the repair groups. We proposed a formula for prioritizing the list of repairs, pointing out the importance of selecting good estimators for the interarrival times between repair requests, the turn-around-times and the man hours for repair. In addition, a model for the assignment and scheduling problem is designed and a preliminary algorithm along with a numerical illustration is presented.
Resumo:
This paper presents a stochastic mixed-integer linear programming approach for solving the self-scheduling problem of a price-taker thermal and wind power producer taking part in a pool-based electricity market. Uncertainty on electricity price and wind power is considered through a set of scenarios. Thermal units are modeled by variable costs, start-up costs and technical operating constraints, such as: ramp up/down limits and minimum up/down time limits. An efficient mixed-integer linear program is presented to develop the offering strategies of the coordinated production of thermal and wind energy generation, aiming to maximize the expected profit. A case study with data from the Iberian Electricity Market is presented and results are discussed to show the effectiveness of the proposed approach.
Resumo:
This paper deals with the self-scheduling problem of a price-taker having wind and thermal power production and assisted by a cyber-physical system for supporting management decisions in a day-ahead electric energy market. The self-scheduling is regarded as a stochastic mixed-integer linear programming problem. Uncertainties on electricity price and wind power are considered through a set of scenarios. Thermal units are modelled by start-up and variable costs, furthermore constraints are considered, such as: ramp up/down and minimum up/down time limits. The stochastic mixed-integer linear programming problem allows a decision support for strategies advantaging from an effective wind and thermal mixed bidding. A case study is presented using data from the Iberian electricity market.
Resumo:
This paper presents a stochastic mixed-integer linear programming approach for solving the self-scheduling problem of a price-taker thermal and wind power producer taking part in a pool-based electricity market. Uncertainty on electricity price and wind power is considered through a set of scenarios. Thermal units are modelled by variable costs, start-up costs and technical operating constraints, such as: forbidden operating zones, ramp up/down limits and minimum up/down time limits. An efficient mixed-integer linear program is presented to develop the offering strategies of the coordinated production of thermal and wind energy generation, having as a goal the maximization of profit. A case study with data from the Iberian Electricity Market is presented and results are discussed to show the effectiveness of the proposed approach.