2 resultados para Non-minimum phase systems
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
This paper deals with the phase control for Neurospora circadian rhythm. The nonlinear control, given by tuning the parameters (considered as controlled variables) in Neurospora dynamical model, allows the circadian rhythms tracking a reference one. When there are many parameters (e.g. 3 parameters in this paper) and their values are unknown, the adaptive control law reveals its weakness since the parameters converging and control objective must be guaranteed at the same time. We show that this problem can be solved using the genetic algorithm for parameters estimation. Once the unknown parameters are known, the phase control is performed by chaos synchronization technique.
Resumo:
In a recent paper [1] Reis showed that both the principles of extremum of entropy production rate, which are often used in the study of complex systems, are corollaries of the Constructal Law. In fact, both follow from the maximization of overall system conductivities, under appropriate constraints. In this way, the maximum rate of entropy production (MEP) occurs when all the forces in the system are kept constant. On the other hand, the minimum rate of entropy production (mEP) occurs when all the currents that cross the system are kept constant. In this paper it is shown how the so-called principle of "minimum energy expenditure" which is often used as the basis for explaining many morphologic features in biologic systems, and also in inanimate systems, is also a corollary of Bejan's Constructal Law [2]. Following the general proof some cases namely, the scaling laws of human vascular systems and river basins are discussed as illustrations from the side of life, and inanimate systems, respectively.