4 resultados para Non-autonomous dynamical systems

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

José Rodrigues Santos de Sousa Ramos, mathematician of great merit, passed away on January 1st, 2007, in Lisbon. He was buried in Sobral da Adiça. His death was a huge loss for the development of mathematics in Portugal. The course of time will increase the dimension of this loss. Therefore, we dedicated this theme issue on Dynamical Systems to recall his memory and underline his work. We never forget you.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present some estimates of the time of convergence to the equilibrium distribution in autonomous and periodic non-autonomous graphs, with ergodic stochastic adjacency matrices, using the eigenvalues of these matrices. On this way we generalize previous results from several authors, that only considered reversible matrices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider piecewise defined differential dynamical systems which can be analysed through symbolic dynamics and transition matrices. We have a continuous regime, where the time flow is characterized by an ordinary differential equation (ODE) which has explicit solutions, and the singular regime, where the time flow is characterized by an appropriate transformation. The symbolic codification is given through the association of a symbol for each distinct regular system and singular system. The transition matrices are then determined as linear approximations to the symbolic dynamics. We analyse the dependence on initial conditions, parameter variation and the occurrence of global strange attractors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a general coupling of two chaotic dynamical systems and we obtain conditions that provide delayed synchronization. We consider four different couplings that satisfy those conditions. We define Window of Delayed Synchronization and we obtain it analytically. We use four different free chaotic dynamics in order to observe numerically the analytically predicted windows for the considered couplings.