2 resultados para Nilo tilapia

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Knowledge of the chemical identity and role of urinary pheromones in fish is scarce, yet it is necessary in order to understand the integration of multiple senses in adaptive responses and the evolution of chemical communication [1]. In nature, Mozambique tilapia (Oreochromis mossambicus) males form hierarchies, and females mate preferentially with dominant territorial males, which they visit in aggregations or leks [2]. Dominant males have thicker urinary bladder muscular walls than subordinates or females and store large volumes of urine, which they release at increased frequency in the presence of subordinate males or preovulatory, but not postspawned, females [3–5]. Females exposed to dominant-male urine augment their release of the oocyte maturation-inducing steroid 17α,20β-dihydroxypregn-4-en-3-one (17,20β-P) [6]. Here we isolate and identify a male Mozambique tilapia urinary sex pheromone as two epimeric (20α- and 20β-) pregnanetriol 3-glucuronates. We show that both males and females have high olfactory sensitivity to the two steroids, which cross-adapt upon stimulation. Females exposed to both steroids show a rapid, 10-fold increase in production of 17,20β-P. Thus, the identified urinary steroids prime the female endocrine system to accelerate oocyte maturation and possibly promote spawning synchrony. Tilapia are globally important as a food source but are also invasive species, with devastating impact on local freshwater ecosystems [7, 8]. Identifying the chemical cues that mediate reproduction may lead to the development of tools for population control [9–11].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Males often use scent to communicate their domi- nance, and to mediate aggressive and breeding behaviors. In teleost fish, however, the chemical composition of male pher- omones is poorly understood. Male Mozambique tilapia, Oreochromis mossambicus, use urine that signals social status and primes females to spawn. The urinary sex pheromone di- rected at females consists of 5β-pregnane-3α,17α,20β-triol 3- glucuronate and its 20α-epimer. The concentration of these is positively correlated with male social rank. This study tested whether dominant male urine reduces aggression in receiver males, and whether the pregnanetriol 3-glucuronates also re- duce male-male aggression. Males were allowed to fight their mirror image when exposed to either: i) water control or a chemical stimulus; ii) dominant male urine (DMU); iii) C18- solid phase (C18-SPE) DMU eluate; iv) C18-SPE DMU eluate plus filtrate; v) the two pregnanetriol 3-glucuronates (P3Gs); or vi) P3Gs plus DMU filtrate. Control males mounted an increas- ingly aggressive fight against their image over time. However, DMU significantly reduced this aggressive response. The two urinary P3Gs did not replicate the effect of whole DMU. Neither did the C18-SPE DMU eluate, containing the P3Gs, alone, nor the C18-SPE DMU filtrate to which the two P3Gs were added. Only exposure to reconstituted DMU (C18-SPE eluate plus filtrate) restored the aggression-reducing effect of whole DMU. Olfactory activity was present in the eluate and the polar filtrate in electro-olfactogram studies. We conclude that P3Gs alone have no reducing effect on aggression and that the urinary signal driving off male competition is likely to be a multi-component pheromone, with components present in both the polar and non-polar urine fractions.