4 resultados para Neustonic plastic

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The preservation of modern and contemporary art and costume collections in museums requires a complete understanding of their constituent materials which are often synthetic or semi-synthetic polymers. An extraordinary amount of quality information can be gained from instrumental techniques, but some of them have the disadvantage of being destructive. This paper presents a new totally integrated non-invasive methodology, for the identification of polymers and their additives, on plastic artefacts in museums. NMR (nuclear magnetic resonance) and in-situ FTIR-ATR (attenuated total reflection infrared spectroscopy) combination allowed the full characterization of the structure of thesematerials and correct identification of each one. The NMR technique applied to leached surface exudates identified unequivocally a great number of additives, exceeding the Py–GC–MS analysis of micro-fragments in number and efficiency. Additionally, in-situ FTIR-ATR provided exactly the same information of the destructive μ-FTIR about the polymer structure and confirmed the presence of some additives. Eight costume pieces (cosmetic boxes and purses), dating to the beginning of the 20th century and belonging to the Portuguese National Museum of Costume and Fashion, were correctly identified with this new integrated methodology, as beingmade of plastics derived fromcellulose acetate or cellulose nitrate polymers, contradicting the initial information that these pieces were made of Bakelite. The identification of a surprisingly large number of different additives forms an added value of this methodology and opens a perspective of a quick and better characterization of plastic artefacts in museum environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study and preservation of museum collections requires complete knowledge and understanding of constituent materials that can be natural, synthetic, or semi-synthetic polymers. In former times, objects were incorporated in museum collections and classified solely by their appearance. New studies, prompted by severe degradation processes or conservation-restoration actions, help shed light on the materiality of objects that can contradict the original information or assumptions. The selected case study presented here is of a box dating from the beginning of the 20th century that belongs to the Portuguese National Ancient Art Museum. Museum curators classified it as a tortoiseshell box decorated with gold applications solely on the basis of visual inspection and the information provided by the donor. This box has visible signs of degradation with white veils, initially assumed to be the result of biological degradation of a proteinaceous matrix. This paper presents the methodological rationale behind this study and proposes a totally non-invasive methodology for the identification of polymeric materials in museum artifacts. The analysis of surface leachates using 1H and 13C nuclear magnetic resonance (NMR) complemented by in situ attenuated total reflection infrared spectroscopy (ATR FT-IR) allowed for full characterization of the object s substratum. The NMR technique unequivocally identified a great number of additives and ATR FT-IR provided information about the polymer structure and while also confirming the presence of additives. The pressure applied during ATR FT-IR spectroscopy did not cause any physical change in the structure of the material at the level of the surface (e.g., color, texture, brightness, etc.). In this study, variable pressure scanning electron microscopy (VP-SEM-EDS) was also used to obtain the elemental composition of the metallic decorations. Additionally, microbiologic and enzymatic assays were performed in order to identify the possible biofilm composition and understand the role of microorganisms in the biodeterioration process. Using these methodologies, the box was correctly identified as being made of cellulose acetate plastic with brass decorations and the white film was identified as being composed mainly of polymer exudates, namely sulphonamides and triphenyl phosphate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a multiscale model bridging length and time scales from molecular to continuum levels with the objective of predicting the yield behavior of amorphous glassy polyethylene (PE). Constitutive pa- rameters are obtained from molecular dynamics (MD) simulations, decreasing the requirement for ad- hoc experiments. Consequently, we achieve: (1) the identification of multisurface yield functions; (2) the high strain rate involved in MD simulations is upscaled to continuum via quasi-static simulations. Validation demonstrates that the entire multisurface yield functions can be scaled to quasi-static rates where the yield stresses are possibly predicted by a proposed scaling law; (3) a hierarchical multiscale model is constructed to predict temperature and strain rate dependent yield strength of the PE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Chinese mitten crab is known as a pest causing damage to fishing gears and fish. On the other hand, this highly invasive species is considered a delicacy by Asian migrants and therefore commercially fished and sold in many countries. The ingestion of plastic by the Chinese mitten crab Eriocheir sinensis from the Baltic coastal waters (Poland) and the Tagus Estuary (Portugal) was studied based on stomach content analysis. As many as 13% of the 302 analysed males and females (38.07–89.07 mm carapace width) from both regions, contained microplastic in the form of strands and balls. Most of them were transparent. Ingested plastic particles were identified as fragments of fishing gears. Contamination with plastic may have a negative impact on this species as well as on higher trophic levels feeding on crabs.