4 resultados para Net heat gain and surface temprature
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
Abstract In the last years, several models have been presented trying to obtain lithosphere and Moho thickness in the Iberian Peninsula, using data related to geoid elevation and topography, gravity, seismicity and thermal analysis. The results obtained show a decrease in the thickness of the crust and the lithosphere in the SW part of the Iberian Peninsula. Density anomalies in the crust are also referred. Data obtained in the region was collected and deviations from average values used were detected. In this work, models were made taking into account the specific characteristics of the region. Heat flow, thermal conductivity, heat production, topography, gravity, seismic and geological data available for the region, were used to adjust the model. The results show that this region is different from other parts of the Iberian Peninsula and a special attention must be given to it. This work shows the importance of trying to know and understand the thermal structure of the region.
Resumo:
ABSTRACT In the last years, several models were presented trying to obtain lithosphere and Moho thickness in the Iberian Peninsula, using data related to geoid elevation and topography, gravity, seismicity and thermal analysis. The results obtained show a decrease in the thickness of the crust and the lithosphere in the SW part of the Iberian Peninsula. Density anomalies in the crust are also referred. The work I intend to present is related with the south of the Ossa Morena Zone, the South Portuguese Zone and the Algarve, in the south of Portugal. Data obtained in the region was collected and deviations from average values used were detected. Models were made taking into account the specific characteristics of the region. Heat flow, thermal conductivity, heat production, topography, gravity, seismic and geological data available for the region, are used to adapt the models. A special attention will be given to the spatial variation of heat flow values and to Moho depth in the region. The results show that this region is different from other parts of the Iberian Peninsula and a special attention must be given to it. The different values obtained using seismic, gravity, and geoid height data, and the results obtained with models using thermal data shows the importance of trying to know and understand the thermal structure of the regions. Problems related with the use of average values will be focused.
Resumo:
Reinterpretation of old heat flow data or use of new data and new techniques of detection of the temperature under the surface have conducted to new heat flow density values in some regions of the globe. The problem of ice melting in Greenland and Antarctica caught the public's attention to the importance of knowledge on heat flow values and thermal structure of the globe. In the last years, several models were presented trying to obtain lithosphere and Moho thickness of the Iberia Peninsula. The work we intend to present is related with the SW part of the Iberia Peninsula ( south of the Ossa Morena zone, South Portuguese Zone and Algarve). The results obtained show a decrease in the thickness of the crust and the lithosphere in this region. Density anomalies in the crust are also referred. I intend to make the connection between the results of these models and the heat flow thermal conductivity, heat production and geological data available for the region, trying to explain the results of heat flow density data obtained.
Resumo:
Modifications in vegetation cover can have an impact on the climate through changes in biogeochemical and biogeophysical processes. In this paper, the tree canopy cover percentage of a savannah-like ecosystem (montado/dehesa) was estimated at Landsat pixel level for 2011, and the role of different canopy cover percentages on land surface albedo (LSA) and land surface temperature (LST) were analysed. A modelling procedure using a SGB machine-learning algorithm and Landsat 5-TM spectral bands and derived vegetation indices as explanatory variables, showed that the estimation of montado canopy cover was obtained with good agreement (R2 = 78.4%). Overall, montado canopy cover estimations showed that low canopy cover class (MT_1) is the most representative with 50.63% of total montado area. MODIS LSA and LST products were used to investigate the magnitude of differences in mean annual LSA and LST values between contrasting montado canopy cover percentages. As a result, it was found a significant statistical relationship between montado canopy cover percentage and mean annual surface albedo (R2 = 0.866, p < 0.001) and surface temperature (R2 = 0.942, p < 0.001). The comparisons between the four contrasting montado canopy cover classes showed marked differences in LSA (χ2 = 192.17, df = 3, p < 0.001) and LST (χ2 = 318.18, df = 3, p < 0.001). The highest montado canopy cover percentage (MT_4) generally had lower albedo than lowest canopy cover class, presenting a difference of −11.2% in mean annual albedo values. It was also showed that MT_4 and MT_3 are the cooler canopy cover classes, and MT_2 and MT_1 the warmer, where MT_1 class had a difference of 3.42 °C compared with MT_4 class. Overall, this research highlighted the role that potential changes in montado canopy cover may play in local land surface albedo and temperature variations, as an increase in these two biogeophysical parameters may potentially bring about, in the long term, local/regional climatic changes moving towards greater aridity.