2 resultados para NEGATIVE ACTIVATION-ENERGIES

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Intra-diffusion coefficients of three fluorinated alcohols, 2,2,3,3,3-pentafluoropropan-1-ol (PFP), 2,2,3,3,4,4,4-heptafluorobutan-1-ol (HFB) and 2,2,3,3,4,4,5,5,5-nonafluoropentan-1-ol (NFP) in water have been measured by the PFG–NMR spin-echo technique as a function of temperature and composition, focusing on the alcohol dilute region. For comparison, intra-diffusion coefficients of 2,2,2- trifluoroethanol (TFE) and HFB have also been measured in heavy water using the same method and conditions. As far as we know, these are the first experimental measurements of this property for these binary systems. Intra-diffusion coefficients for NFP in water and for TFE and HFB in heavy water have also been obtained by molecular dynamics simulation, complementing those for TFE, PFP and HFB reported in a previous work. The agreement between experimental and simulated results for PFP, HFB and NFP in water is reasonable, although presenting higher deviations than for the TFE/water system. From the dependence of the intra-diffusion coefficients on temperature, diffusion activation energies were estimated for all the solutes in water and heavy water.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The hydrothermal carbonization can be considered an environmental friendly process for the production of carbon materials with tailored properties, such as regular porous structure and specific surface chemistry. This process is easy to perform and uses mild temperatures without the use of solvents or gases, which results in a positive environmental balance when compared with the usual pyrolysis process [1]. Diabetes affects more than 152 million people in Europe and is on the rise all over the World. Metformin is one of the most used drugs to treat type 2 diabetes. This drug is an endocrine disruptor with a potential negative impact in the environment due to the fact that metformin is almost not metabolized in the human body and the incorrect disposal into the domestic garbage. Another relevant aspect is the danger of overdose intake of the drug that can lead to lactic acidosis, which in extreme cases can be lethal. The work now reported study the in vitro adsorption of metformin onto activated carbons using simulated gastric and intestinal fluids.