1 resultado para Mentally ill offenders - Risk assessment
em Repositório Científico da Universidade de Évora - Portugal
Filtro por publicador
- JISC Information Environment Repository (1)
- Abertay Research Collections - Abertay University’s repository (4)
- Aberystwyth University Repository - Reino Unido (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (8)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (6)
- Aston University Research Archive (22)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (10)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (3)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (54)
- Boston University Digital Common (2)
- Brock University, Canada (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- Cambridge University Engineering Department Publications Database (11)
- CentAUR: Central Archive University of Reading - UK (39)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (9)
- Cochin University of Science & Technology (CUSAT), India (1)
- Coffee Science - Universidade Federal de Lavras (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (5)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (7)
- Digital Commons - Montana Tech (1)
- Digital Commons @ DU | University of Denver Research (2)
- Digital Commons at Florida International University (9)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (17)
- DigitalCommons@University of Nebraska - Lincoln (2)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (9)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (24)
- FUNDAJ - Fundação Joaquim Nabuco (2)
- Glasgow Theses Service (3)
- Greenwich Academic Literature Archive - UK (2)
- Harvard University (2)
- Helda - Digital Repository of University of Helsinki (13)
- Hospitais da Universidade de Coimbra (1)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (3)
- Instituto Nacional de Saúde de Portugal (9)
- Instituto Politécnico de Santarém (1)
- Instituto Politécnico do Porto, Portugal (6)
- Massachusetts Institute of Technology (1)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Memorial University Research Repository (1)
- National Center for Biotechnology Information - NCBI (4)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (4)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (3)
- QSpace: Queen's University - Canada (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (62)
- Queensland University of Technology - ePrints Archive (202)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (6)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (2)
- Repositório Científico do Instituto Politécnico de Santarém - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (5)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (22)
- Repositorio Institucional Universidad de Medellín (3)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Scielo España (2)
- South Carolina State Documents Depository (1)
- Universidad de Alicante (2)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (11)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (2)
- Université de Lausanne, Switzerland (7)
- Université de Montréal (2)
- Université de Montréal, Canada (9)
- University of Canberra Research Repository - Australia (4)
- University of Michigan (50)
- University of Queensland eSpace - Australia (49)
- University of Southampton, United Kingdom (3)
- University of Washington (4)
- Worcester Research and Publications - Worcester Research and Publications - UK (3)
Resumo:
The AntiPhospholipid Syndrome (APS) is an acquired autoimmune disorder induced by high levels of antiphospholipid antibodies that cause arterial and veins thrombosis, as well as pregnancy-related complications and morbidity, as clinical manifestations. This autoimmune hypercoagulable state, usually known as Hughes syndrome, has severe consequences for the patients, being one of the main causes of thrombotic disorders and death. Therefore, it is required to be preventive; being aware of how probable is to have that kind of syndrome. Despite the updated of antiphospholipid syndrome classification, the diagnosis remains difficult to establish. Additional research on clinically relevant antibodies and standardization of their quantification are required in order to improve the antiphospholipid syndrome risk assessment. Thus, this work will focus on the development of a diagnosis decision support system in terms of a formal agenda built on a Logic Programming approach to knowledge representation and reasoning, complemented with a computational framework based on Artificial Neural Networks. The proposed model allows for improving the diagnosis, classifying properly the patients that really presented this pathology (sensitivity higher than 85%), as well as classifying the absence of APS (specificity close to 95%).