2 resultados para Marxan with Zones

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Little information is available on the degree of within-field variability of potential production of Tall wheatgrass (Thinopyrum ponticum) forage under unirrigated conditions. The aim of this study was to characterize the spatial variability of the accumulated biomass (AB) without nutritional limitations through vegetation indexes, and then use this information to determine potential management zones. A 27-×-27-m grid cell size was chosen and 84 biomass sampling areas (BSA), each 2 m(2) in size, were georeferenced. Nitrogen and phosphorus fertilizers were applied after an initial cut at 3 cm height. At 500 °C day, the AB from each sampling area, was collected and evaluated. The spatial variability of AB was estimated more accurately using the Normalized Difference Vegetation Index (NDVI), calculated from LANDSAT 8 images obtained on 24 November 2014 (NDVInov) and 10 December 2014 (NDVIdec) because the potential AB was highly associated with NDVInov and NDVIdec (r (2) = 0.85 and 0.83, respectively). These models between the potential AB data and NDVI were evaluated by root mean squared error (RMSE) and relative root mean squared error (RRMSE). This last coefficient was 12 and 15 % for NDVInov and NDVIdec, respectively. Potential AB and NDVI spatial correlation were quantified with semivariograms. The spatial dependence of AB was low. Six classes of NDVI were analyzed for comparison, and two management zones (MZ) were established with them. In order to evaluate if the NDVI method allows us to delimit MZ with different attainable yields, the AB estimated for these MZ were compared through an ANOVA test. The potential AB had significant differences among MZ. Based on these findings, it can be concluded that NDVI obtained from LANDSAT 8 images can be reliably used for creating MZ in soils under permanent pastures dominated by Tall wheatgrass.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study deals with the development of systematic conservation planning as management instrument in small oceanic islands, ensuring open systems of governance, and able to integrate an informed and involved participation of the stakeholders. Marxan software was used to define management areas according a set of alternative land use scenarios considering different conservation and management paradigms. Modeled conservation zones were interpreted and compared with the existing protected areas allowing more fused information for future trade-outs and stakeholder's involvement. The results, allowing the identification of Target Management Units (TMU) based on the consideration of different development scenarios proved to be consistent with a feasible development of evaluation approaches able to support sound governance systems. Moreover, the detailed geographic identification of TMU seems to be able to support participated policies towards a more sustainable management of the entire island