2 resultados para Majolica
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
The glaze and in-glaze pigments of the historical nineteenth-century glazed tiles from the Pena National Palace (Sintra, Portugal) were characterized using a multi-analytical approach. Chemical composition and microstructural characterization were ascertained by µ-PIXE, µ-Raman, optical microscopy and VP-SEM–EDS. The manufacturing technique and colour palette in these tiles were found to be close to the ceramic pigments used in traditional majolica. The blue and purple colours derive from cobalt oxide and manganese oxide, respectively. A mixture of Pb–Sn–Sb yellow with cobalt oxide and iron oxide was used for green and dark yellow, respectively, while grey tonalities consist of a complex mixture of cobalt oxide, manganese oxide and Pb–Sn–Sb yellow in different proportions. Results obtained allowed the determination of the oxides and elements used in pigments as well as production techniques, resorting to traditional majolica manufacture, although the tiles were produced by the end of the nineteenth century.
Resumo:
A laboratory-based methodology was designed to assess the bioreceptivity of glazed tiles. The experimental set-up consisted of multiple steps: manufacturing of pristine and artificially aged glazed tiles, enrichment of phototrophic microorganisms, inoculation of phototrophs on glazed tiles, incubation under optimal conditions and quantification of biomass. In addition, tile intrinsic properties were assessed to determine which material properties contributed to tile bioreceptivity. Biofilm growth and biomass were appraised by digital image analysis, colorimetry and chlorophyll a analysis. SEM, micro-Raman and micro-particle induced X-ray emission analyses were carried out to investigate the biodeteriorating potential of phototrophic microorganisms on the glazed tiles. This practical and multidisciplinary approach showed that the accelerated colonization conditions allowed different types of tile bioreceptivity to be distinguished and to be related to precise characteristics of the material. Aged tiles showed higher bioreceptivity than pristine tiles due to their higher capillarity and permeability. Moreover, biophysical deterioration caused by chasmoendolithic growth was observed on colonized tile surfaces.