2 resultados para Mail surveys

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a process for the classifi cation of new residential electricity customers. The current state of the art is extended by using a combination of smart metering and survey data and by using model-based feature selection for the classifi cation task. Firstly, the normalized representative consumption profi les of the population are derived through the clustering of data from households. Secondly, new customers are classifi ed using survey data and a limited amount of smart metering data. Thirdly, regression analysis and model-based feature selection results explain the importance of the variables and which are the drivers of diff erent consumption profi les, enabling the extraction of appropriate models. The results of a case study show that the use of survey data signi ficantly increases accuracy of the classifi cation task (up to 20%). Considering four consumption groups, more than half of the customers are correctly classifi ed with only one week of metering data, with more weeks the accuracy is signifi cantly improved. The use of model-based feature selection resulted in the use of a signifi cantly lower number of features allowing an easy interpretation of the derived models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Email is a key communication format in a digital world, both for professional and/or personal usage. Exchanged messages (both human and automatically generated) have reached such a volume that processing them can be a great challenge for human users that try to do it on a daily basis and in an efficient manner. In fact, a significant amount of their time is spent searching and getting context information (normally historic information) in order to prepare a reply message or to take a decision/action, when compared to the actual time required for writing a reply. Therefore, it is of utmost importance for this process to use both automatic and semi-automatic mechanisms that allow to put email messages into context. Since context information is given, not only by historical email messages but also inferred from the relationship between contacts and/or organizations present in the messages, the existence of navigation mechanisms (and even exploration ones) between contacts and entities associated to email messages, is of fundamental importance. This is the main purpose of the SMART Mail prototype, which architecture, data visualization and exploration components and AI algorithms, are presented throughout this paper.