4 resultados para MESONS
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
The Covariant Spectator Theory (CST) is used to calculate the mass spectrum and vertex functions of heavy–light and heavy mesons in Minkowski space. The covariant kernel contains Lorentz scalar, pseudoscalar, and vector contributions. The numerical calculations are performed in momentum space, where special care is taken to treat the strong singularities present in the confining kernel. The observed meson spectrum is very well reproduced after fitting a small number of model parameters. Remarkably, a fit to a few pseudoscalar meson states only, which are insensitive to spin–orbit and tensor forces and do not allow to separate the spin–spin from the central interaction, leads to essentially the same model parameters as a more general fit. This demonstrates that the covariance of the chosen interaction kernel is responsible for the very accurate prediction of the spin-dependent quark–antiquark interactions.
Resumo:
Preliminary calculations using the Covariant Spectator Theory (CST) employed a scalar linear confining interaction and an additional constant vector potential to compute the mesonic mass spectra. In this work we generalize the confining interaction to include more general structures, in particular a vector and also a pseudoscalar part, as suggested by a recent study. A one-gluon-exchange kernel is also implemented to describe the short-range part of the interaction. We solve the simplest CST approxima- tion to the complete Bethe-Salpeter equation, the one-channel spectator equation, using a numerical technique that eliminates all singularities from the kernel. The parameters of the model are determined through a fit to the experimental pseudoscalar meson spectra, with a good agreement for both quarkonia and heavy-light states.
Resumo:
Following up on earlier work on the $q\bar{q}$-bound-state problem using a covariant, chiral-symmetric formalism based upon the Covariant Spectator Theory, we study the heavy–light case for both pseudoscalar and vector mesons. Derived directly in Minkowski space, our approach approximates the full Bethe–Salpeter-equation, taking into account, effectively, the contributions of both ladder and crossed ladder diagrams in the kernel. Results for several mass spectra using a relativistic covariant generalization of a Cornell plus a constant potential to model the interquark interaction are given and discussed.
Resumo:
We introduce a covariant approach in Minkowski space for the description of quarks and mesons that exhibits both chiral-symmetry breaking and confinement. In a simple model for the interquark interaction, the quark mass function is obtained and used in the calculation of the pion form factor. We study the effects of the mass function and the different quark pole contributions on the pion form factor.