2 resultados para Lipogenesis
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
The Alentejano pig is an autochthonous breed scarcely selected, that due to its high trend for fat deposition present poorer meat yields than modern commercial breeds. However, its higher contents of intramuscular fat (IMF) increase pork sensory attributes and consumers’ acceptability. Animal cells can obtain fatty acids (FA) from three distinct pathways: diet ingested fats, lipolysis of stored lipids in cells and through de novo synthesis. Betaine has been used as a dietary supplement in pig nutrition to reduce fat deposition and increase lean muscle mass with inconsistent results so far. This study compares the expression of genes involved in lipid metabolism from pigs consuming a control diet, and the control diet supplemented with betaine (WB). The expression of two genes involved in lipogenesis and lipolysis were evaluated in L. lumborum and B. femoris: ACC, which mediates the carboxylation of acetyl CoA into malonyl CoA concluding the first step of de novo synthesis, and MCPT1 which is responsible for the transport of acyl groups into the mitochondria for the start of β-oxidation.
Resumo:
This study evaluates the effects of betaine supplementation (1 g kg−1 for 20 weeks) on the regulation of genes involved in lipid and cholesterol metabolism of Longissimus lumborum and Biceps femoris from obese Alentejano pigs. Betaine supplementation led to an increase in total cholesterol in both muscles, complementing results previously published indicating a significant increase on the intramuscular lipid content. The expression of twelve genes involved in lipogenesis, lipolysis/FA oxidation, FA transport, and cholesterol metabolism, as well as two transcription factors were also evaluated. Genes related to lipid and cholesterol synthesis plus FA transport were consistently up-regulated in both muscles of betaine fed pigs. On the other hand, genes related to lipolysis/FA oxidation were not affected or down-regulated by betaine supplementation. Our data suggest that the underlying mechanism regulating IMF and cholesterol accumulation in Alentejano pigs supplemented with betaine is associated with the up-regulation of genes involved in lipid synthesis, FA transport, and cholesterol synthesis.