7 resultados para Linguistic Knowledge Base
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
The present paper discusses the problem of the plurality of the text, as a cultural object, and its implications for the textual criticism activity. Starting from the fact that the nature of the textual object, especially in the case of ancient texts and literary texts, requires the editor to call into play very diverse knowledge – among which stands out the linguistic knowledge, but also the knowledge of the work, its characteristics and context – we advocate that a «philological» approach, multi and interdisciplinary, of the text editing is still needed, desirably carried out by teams of experts in different scientific fields. We exemplify, among others,with the case of the editions of the Sermões, by Vieira.
Resumo:
Question Answering systems that resort to the Semantic Web as a knowledge base can go well beyond the usual matching words in documents and, preferably, find a precise answer, without requiring user help to interpret the documents returned. In this paper, the authors introduce a Dialogue Manager that, through the analysis of the question and the type of expected answer, provides accurate answers to the questions posed in Natural Language. The Dialogue Manager not only represents the semantics of the questions, but also represents the structure of the discourse, including the user intentions and the questions context, adding the ability to deal with multiple answers and providing justified answers. The authors’ system performance is evaluated by comparing with similar question answering systems. Although the test suite is slight dimension, the results obtained are very promising.
Resumo:
Landscape is recognised to be an important asset for people’s quality of life and people and the landscape interact in multiple and complex ways. Both in science and policy, this interaction has been dealt with in a fragmented way, depending on the objectives, the disciplinary perspective, as well as the used concep- tual backdrop. In this wider framework, landscape identity emerges in policy discourses as a powerful argument to value landscape but it lacks an operationalised framework for policymaking. This paper has two major goals. One is to review the conceptual dialogue between landscape’s and people’s identity. The other is to identify contents of identity in the landscape (i.e. attributes used to define landscape identity) and the complexity of the identity (i.e. dimensions used to define landscape identity) as a way to increase efficiency in more spatially targeted policies. Above all, this paper discusses how landscape identity has been approached, in order to get an improved understanding of its potential for introducing the landscape concept at multiple levels of governance and how an increased knowledge base might be useful to inform policy making.
Resumo:
Stroke stands for one of the most frequent causes of death, without distinguishing age or genders. Despite representing an expressive mortality fig-ure, the disease also causes long-term disabilities with a huge recovery time, which goes in parallel with costs. However, stroke and health diseases may also be prevented considering illness evidence. Therefore, the present work will start with the development of a decision support system to assess stroke risk, centered on a formal framework based on Logic Programming for knowledge rep-resentation and reasoning, complemented with a Case Based Reasoning (CBR) approach to computing. Indeed, and in order to target practically the CBR cycle, a normalization and an optimization phases were introduced, and clustering methods were used, then reducing the search space and enhancing the cases re-trieval one. On the other hand, and aiming at an improvement of the CBR theo-retical basis, the predicates` attributes were normalized to the interval 0…1, and the extensions of the predicates that match the universe of discourse were re-written, and set not only in terms of an evaluation of its Quality-of-Information (QoI), but also in terms of an assessment of a Degree-of-Confidence (DoC), a measure of one`s confidence that they fit into a given interval, taking into account their domains, i.e., each predicate attribute will be given in terms of a pair (QoI, DoC), a simple and elegant way to represent data or knowledge of the type incomplete, self-contradictory, or even unknown.
Resumo:
As a matter of fact, an Intensive Care Unit (ICU) stands for a hospital facility where patients require close observation and monitoring. Indeed, predicting Length-of-Stay (LoS) at ICUs is essential not only to provide them with improved Quality-of-Care, but also to help the hospital management to cope with hospital resources. Therefore, in this work one`s aim is to present an Artificial Intelligence based Decision Support System to assist on the prediction of LoS at ICUs, which will be centered on a formal framework based on a Logic Programming acquaintance for knowledge representation and reasoning, complemented with a Case Based approach to computing, and able to handle unknown, incomplete, or even contradictory data, information or knowledge.
Resumo:
It is well known that human resources play a valuable role in a sustainable organizational development. Indeed, this work will focus on the development of a decision support system to assess workers’ satisfaction based on factors related to human resources management practices. The framework is built on top of a Logic Programming approach to Knowledge Representation and Reasoning, complemented with a Case Based approach to computing. The proposed solution is unique in itself, once it caters for the explicit treatment of incomplete, unknown, or even self-contradictory information, either in terms of a qualitative or quantitative setting. Furthermore, clustering methods based on similarity analysis among cases were used to distinguish and aggregate collections of historical data or knowledge in order to reduce the search space, therefore enhancing the cases retrieval and the overall computational process.
Resumo:
A problemática relacionada com a modelação da qualidade da água de albufeiras pode ser abordada de diversos pontos de vista. Neste trabalho recorre-se a metodologias de resolução de problemas que emanam da Área Cientifica da Inteligência Artificial, assim como a ferramentas utilizadas na procura de soluções como as Árvores de Decisão, as Redes Neuronais Artificiais e a Aproximação de Vizinhanças. Actualmente os métodos de avaliação da qualidade da água são muito restritivos já que não permitem aferir a qualidade da água em tempo real. O desenvolvimento de modelos de previsão baseados em técnicas de Descoberta de Conhecimento em Bases de Dados, mostrou ser uma alternativa tendo em vista um comportamento pró-activo que pode contribuir decisivamente para diagnosticar, preservar e requalificar as albufeiras. No decurso do trabalho, foi utilizada a aprendizagem não-supervisionada tendo em vista estudar a dinâmica das albufeiras sendo descritos dois comportamentos distintos, relacionados com a época do ano. ABSTRACT: The problems related to the modelling of water quality in reservoirs can be approached from different viewpoints. This work resorts to methods of resolving problems emanating from the Scientific Area of Artificial lntelligence as well as to tools used in the search for solutions such as Decision Trees, Artificial Neural Networks and Nearest-Neighbour Method. Currently, the methods for assessing water quality are very restrictive because they do not indicate the water quality in real time. The development of forecasting models, based on techniques of Knowledge Discovery in Databases, shows to be an alternative in view of a pro-active behavior that may contribute to diagnose, maintain and requalify the water bodies. ln this work. unsupervised learning was used to study the dynamics of reservoirs, being described two distinct behaviors, related to the time of year.