1 resultado para Learning algorithms
em Repositório Científico da Universidade de Évora - Portugal
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Repository Napier (1)
- Aberdeen University (1)
- Aberystwyth University Repository - Reino Unido (9)
- Academic Archive On-line (Karlstad University; Sweden) (1)
- Academic Archive On-line (Mid Sweden University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (9)
- Aston University Research Archive (31)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (10)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (6)
- Boston University Digital Common (5)
- Brock University, Canada (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (11)
- CaltechTHESIS (9)
- Cambridge University Engineering Department Publications Database (18)
- CentAUR: Central Archive University of Reading - UK (16)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (7)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (5)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- Dalarna University College Electronic Archive (2)
- Digital Commons at Florida International University (2)
- DigitalCommons@University of Nebraska - Lincoln (3)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (3)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (5)
- Helda - Digital Repository of University of Helsinki (2)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (45)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (6)
- Massachusetts Institute of Technology (16)
- National Center for Biotechnology Information - NCBI (2)
- Nottingham eTheses (2)
- Publishing Network for Geoscientific & Environmental Data (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (26)
- Queensland University of Technology - ePrints Archive (485)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositorio de la Universidad de Cuenca (1)
- Repositório Institucional da Universidade Federal do Rio Grande - FURG (1)
- Repositorio Institucional de la Universidad de Málaga (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (25)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (5)
- Universidad de Alicante (4)
- Universidad Politécnica de Madrid (21)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (3)
- Universitat de Girona, Spain (6)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (12)
- Université Laval Mémoires et thèses électroniques (1)
- University of Queensland eSpace - Australia (13)
- University of Washington (6)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
The main purpose of this study is to evaluate the best set of features that automatically enables the identification of argumentative sentences from unstructured text. As corpus, we use case laws from the European Court of Human Rights (ECHR). Three kinds of experiments are conducted: Basic Experiments, Multi Feature Experiments and Tree Kernel Experiments. These experiments are basically categorized according to the type of features available in the corpus. The features are extracted from the corpus and Support Vector Machine (SVM) and Random Forest are the used as Machine learning algorithms. We achieved F1 score of 0.705 for identifying the argumentative sentences which is quite promising result and can be used as the basis for a general argument-mining framework.