5 resultados para Leaf nutrient content
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
SHORT-TERM EFFECTS OF SALINITY ON SOME PHYSIOLOGICAL PARAMETERS OF YOUNG OLIVE TREES OF ARBEQUINA, COBRANÇOSA AND GALEGA VARIETIES Ana Elisa Rato1,4, Renato Coelho1, Margarida Vaz1, Teresa Carola2, Dália Barbosa2, Nádia Silva1, José dos Santos2, Lourenço Machado2, João Godinho2, Luzia Ruas2, Margarida Barradas2, Hernani Pereira2, Sara Porfírio4 1 ICAAM, Universidade de Évora, Apartado 94, 7002-554 Évora, Portugal 2 Master students, Universidade de Évora, Apartado 94, 7002-554 Évora, Portugal 3 Ph.D. student, Universidade de Évora, Apartado 94, 7002-554 Évora, Portugal 4 aerato@uevora.pt Due to the desertification in some regions, the interest in plant’s tolerance to salinity has been increasing, as this response is determining for plant survival in stress conditions. This work reports the investigation of tolerance to salt in two year-old olive trees (Olea europaea L.) of three varieties, Arbequina, Cobrançosa and Galega vulgar. Plants were grown in 10 L plastic pots containing approximately 9 Kg of a sandy granitic soil, on a greenhouse. For 3 months (from the beginning of February to the end of April 2012), they were subjected to three levels of salinity in the irrigation water, 0 mM, 80 mM and 200 mM NaCl (6 plants per salinity level in a total of 18 plants of each variety),. Stomatal conductance (gs) and relative leaf chlorophyll content were assessed on each plant in February, March and April. Mid-day leaf water potential () and soil salinity were measured at the end of the experiment (April). On average, concerning all treatments and dates of determination, stomatal conductance of Arbequina and Galega vulgar was quite similar, around 40 mmol m-2 s-1, but Cobrançosa had a value of gs 36% higher, almost 50% higher (61 mmol m-2 s-1) when compared with the controls (0 mM salt) of the other two varieties. In percentage of controls, there was little difference in gs between varieties and between salinities during February and March. In contrast, in April, after about 90 days of exposure to salt, there was a clear decrease in gs with salt irrigation, proportional to salt concentration. Compared with controls, plants irrigated with 200 mM salt showed around 80% (Arbequina) or 85% (Cobrançosa and Galega vulgar) decrease in gs. Chlorophyll content of leaves showed less than 5% difference between varieties on the average of all treatments and dates of determination. During the course of this experiment, the salinity levels used did not show any relevant effect on chlorophyll content. Overall, at the end of the experimental period (April), leaf water potential () at midday was significantly higher in Cobrançosa (-1,4 MPa) than in Galega vulgar (-1,7 MPa) or Arbequina (-1,8 MPa), and salt decreased of control plants (-1,25 MPa) by an average 30% (with 80 mM) and 65% (with 200 mM). At the end of the experiment, salinity in the soil irrigated with 0 mM, 80 mM or 200 mM NaCl was, on average of all varieties, 0,2 mS, 1,0 mS or 2,0 mS, respectively. Soil salinity was quite similar in Arbequina and Galega vulgar but about 35% lower in the pots of Cobrançosa, on average of all salt-irrigation levels. Plants of Cobrançosa had higher stomatal conductance, however they showed higher water potential and lower salinity in the soil. These apparently contradictory results seem to suggest that Cobrançosa responds to salt differently from the other two varieties. This issue needs further investigation.
Resumo:
Abstract The effects of three commercial substrates (a mixture of forest residues, composted grape husks, and white peat, black peat and coir) on plant growth and nitrogen (N) and nitrate (NO3) concentration and content were evaluated in spinach (Spinacia oleracea L. cv. Tapir). Spinach seedlings were transplanted at 45 days after emergence into Styrofoam boxes filled with the substrates and were grown during winter and early spring in an unheated greenhouse with no supplemental lighting. Each planting box was irrigated daily by drip and fertilized with a complete nutrient solution. The NO3 content of the drainage water was lower in coir than in the other substrates. However, shoot NO3 concentration was not affected by substrate type, while yield and total shoot N and NO3 content were greater when plants were grown in peat than in the mixed substrate or the coir. Leaf chlorophyll meter readings provided a good indication of the amount of N in the plants and increased linearly with total shoot N. Keywords Spinacia oleracea; chlorophyll meter; coir; peat; soilless culture systems
Resumo:
The effects of three commercial substrates (a mixture of forest residues, composted grape husks, and white peat, black peat and coir) on plant growth and nitrogen (N) and nitrate (NO3) concentration and content were evaluated in spinach (Spinacia oleracea L. cv. Tapir). Spinach seedlings were transplanted at 45 days after emergence into Styrofoam boxes filled with the substrates and were grown during winter and early spring in an unheated greenhouse with no supplemental lighting. Each planting box was irrigated daily by drip and fertilized with a complete nutrient solution. The NO3 content of the drainage water was lower in coir than in the other substrates. However, shoot NO3 concentration was not affected by substrate type, while yield and total shoot N and NO3 content were greater when plants were grown in peat than in the mixed substrate or the coir. Leaf chlorophyll meter readings provided a good indication of the amount of N in the plants and increased linearly with total shoot N.
Resumo:
Vitis vinifera L. cv. Crimson Seedless is a late season red table grape developed in 1989, with a high market value and increasingly cultivated under protected environments to extend the availability of seedless table grapes into the late fall. The purpose of this work was to evaluate leaf water potential and sap flow as indicators of water stress in Crimson Seedless vines under standard and reduced irrigation strategy, consisting of 70 % of the standard irrigation depth. Additionally, two sub-treatments were applied, consisting of normal irrigation throughout the growing season and a short irrigation induced stress period between veraison and harvest. Leaf water potential measurements coherently signaled crop-available water variations caused by different irrigation treatments, suggesting that this plant-based method can be reliably used to identify water-stress conditions. The use of sap flow density data to establish a ratio based on a reference ‘well irrigated vine’ and less irrigated vines can potentially be used to signal differences in the transpiration rates, which may be suitable for improving irrigation management strategies while preventing undesirable levels of water stress. Although all four irrigation strategies resulted in the production of quality table grapes, significant differences (p ≤ 0.05) were found in both berry weight and sugar content between the standard irrigation and reduced irrigation treatments. Reduced irrigation increased slightly the average berry size as well as sugar content and technical maturity index. The 2-week irrigation stress period had a negative effect on these parameters.
Resumo:
Abstract Vitis vinifera L. cv. Crimson Seedless is a late season red table grape developed in 1989, with a high market value and increasingly cultivated under protected environments to extend the availability of seedless table grapes into the late fall. The purpose of this work was to evaluate leaf water potential and sap flow as indicators of water stress in Crimson Seedless vines under standard and reduced irrigation strategy, consisting of 70 % of the standard irrigation depth. Additionally, two sub-treatments were applied, consisting of normal irrigation throughout the growing season and a short irrigation induced stress period between veraison and harvest. Leaf water potential measurements coherently signaled crop-available water variations caused by different irrigation treatments, suggesting that this plant-based method can be reliably used to identify water-stress conditions. The use of sap flow density data to establish a ratio based on a reference ‘well irrigated vine’ and less irrigated vines can potentially be used to signal differences in the transpiration rates, which may be suitable for improving irrigation management strategies while preventing undesirable levels of water stress. Although all four irrigation strategies resulted in the production of quality table grapes, significant differences (p ≤ 0.05) were found in both berry weight and sugar content between the standard irrigation and reduced irrigation treatments. Reduced irrigation increased slightly the average berry size as well as sugar content and technical maturity index. The 2-week irrigation stress period had a negative effect on these parameters.