1 resultado para Language in the curriculum
em Repositório Científico da Universidade de Évora - Portugal
Filtro por publicador
- Repository Napier (1)
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberdeen University (2)
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (3)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (7)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Aquatic Commons (1)
- Archive of European Integration (8)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Aston University Research Archive (21)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (1)
- Biblioteca Digital de la Universidad del Valle - Colombia (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (36)
- Brock University, Canada (8)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Cambridge University Engineering Department Publications Database (5)
- CentAUR: Central Archive University of Reading - UK (36)
- Central European University - Research Support Scheme (1)
- Cochin University of Science & Technology (CUSAT), India (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (6)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Dalarna University College Electronic Archive (17)
- Digital Archives@Colby (2)
- Digital Commons - Michigan Tech (2)
- Digital Commons - Montana Tech (1)
- Digital Commons @ DU | University of Denver Research (3)
- Digital Commons @ Winthrop University (2)
- Digital Commons at Florida International University (9)
- Digital Peer Publishing (3)
- DigitalCommons@The Texas Medical Center (3)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (1)
- Glasgow Theses Service (2)
- Greenwich Academic Literature Archive - UK (1)
- Harvard University (2)
- Helda - Digital Repository of University of Helsinki (8)
- Instituto Politécnico do Porto, Portugal (1)
- Línguas & Letras - Unoeste (11)
- Ministerio de Cultura, Spain (32)
- Portal de Revistas Científicas Complutenses - Espanha (3)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (46)
- Queensland University of Technology - ePrints Archive (296)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositorio Académico de la Universidad Nacional de Costa Rica (2)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositorio Institucional de la Universidad de El Salvador (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (6)
- School of Medicine, Washington University, United States (6)
- South Carolina State Documents Depository (1)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (5)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (9)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Montréal, Canada (1)
- University of Canberra Research Repository - Australia (1)
- University of Michigan (166)
- University of Queensland eSpace - Australia (24)
- University of Washington (4)
- WestminsterResearch - UK (8)
Resumo:
This paper presents a study made in a field poorly explored in the Portuguese language – modality and its automatic tagging. Our main goal was to find a set of attributes for the creation of automatic tag- gers with improved performance over the bag-of-words (bow) approach. The performance was measured using precision, recall and F1. Because it is a relatively unexplored field, the study covers the creation of the corpus (composed by eleven verbs), the use of a parser to extract syntac- tic and semantic information from the sentences and a machine learning approach to identify modality values. Based on three different sets of attributes – from trigger itself and the trigger’s path (from the parse tree) and context – the system creates a tagger for each verb achiev- ing (in almost every verb) an improvement in F1 when compared to the traditional bow approach.