3 resultados para LIQUID-CRYSTAL MIXTURES

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This article reports a combined thermodynamic, spectroscopic, and computational study on the interactions and structure of binary mixtures of hydrogenated and fluorinated substances that simultaneously interact through strong hydrogen bonding. Four binary mixtures of hydrogenated and fluorinated alcohols have been studied, namely, (ethanol + 2,2,2-trifluoroethanol (TFE)), (ethanol + 2,2,3,3,4,4,4-heptafluoro-1-butanol), (1-butanol (BuOH) + TFE), and (BuOH + 2,2,3,3,4,4,4-heptafluoro-1-butanol). Excess molar volumes and vibrational spectra of all four binary mixtures have been measured as a function of composition at 298 K, and molecular dynamics simulations have been performed. The systems display a complex behavior when compared with mixtures of hydrogenated alcohols and mixtures of alkanes and perfluoroalkanes. The combined analysis of the results from different approaches indicates that this results from a balance between preferential hydrogen bonding between the hydrogenated and fluorinated alcohols and the unfavorable dispersion forces between the hydrogenated and fluorinated chains. As the chain length increases, the contribution of dispersion increases and overcomes the contribution of H-bonds. In terms of the liquid structure, the simulations suggest the possibility of segregation between the hydrogenated and fluorinated segments, a hypothesis corroborated by the spectroscopic results. Furthermore, a quantitative analysis of the infrared spectra reveals that the presence of fluorinated groups induces conformational changes in the hydrogenated chains from the usually preferred all-trans to more globular arrangements involving gauche conformations. Conformational rearrangements at the CCOH dihedral angle upon mixing are also disclosed by the spectra.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For the activated carbon (AC) production, we used the most common industrial and consumer solid waste, namely polyethyleneterephthalate (PET), alone or blended with other synthetic polymer such polyacrylonitrile (PAN). By mixing PET, with PAN, an improvement in the yield of the AC production was found and the basic character and some textural and chemical properties were enhanced. The PET–PAN mixture was subjected to carbonisation, with a pyrolysis yield of 31.9%, between that obtained with PET (16.9%) or PAN (42.6%) separately. The AC revealed a high surface area (1400, 1230 and 1117 m2 g−1) and pore volume (0.46, 0.56 and 0.50 cm3 g−1), respectively, for PET, PAN and PET–PAN precursors. Selected ACs were successfully tested for 4- chloro-2-methylphenoxyacetic acid (MCPA) and diuron removal from the liquid phase, showing a higher adsorption capacity (1.7 and 1.2 mmol g−1, respectively, for MCPA and diuron) and good fits with the Langmuir (PET) and Freundlich equation (PAN and PET–PAN blend). With MCPA, the controlling factor to the adsorption capacity was the porous volume and the average pore size. Concerning diuron, the adsorption was controlled essentially by the external diffusion. A remarkable result is the use of different synthetic polymers wastes, as precursors for the production of carbon materials, with high potential application on the pesticides removals from the liquid phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The production of activated carbons (ACs) involves two main steps: the carbonization of the carbonaceous of raw materials at temperatures below 1073 K in the absence of oxygen and the activation had realized at the temperature up to 1173 but the most useful temperature at 1073 K. In our study we used the most common industrial and consumer solid waste, namely PET, alone or blended with other synthetic polymer PAN. By mixing the two polymers in different ratios, an improvement of the yield of the AC production was found and some textural properties were enhanced by comparison with the AC prepared using each polymer separately. When all the samples were exposed through the carbonization process with a pyrolysis the mixture of PAN-PET (1:1w/w) yield around 31.9%, between that obtained with PET (16.9%) or PAN (42.6%) separately. The combine activation, with CO2 at 1073 K, allow ACs with a lower burn-off degree isothermally, when compared with those attained with PET or PAN alone, but with similarly chemicals or textural properties. The resultant ACs are microporous in their nature, as the activation time increase, the PET-PAN mixture AC are characterized by a better developed porous structure, when associated with the AC prepared from PAN. The AC prepared from PET-PAN mixture are characterized by basic surface characteristics, with a pHpzc around 10.5, which is an important characteristic for future applications on acidic pollutants removals from liquid or gaseous phase. In this study we had used the FTIR methods to determine the main functional groups in the surface of the activated carbons. The adsorbents prepared from PAN fibres presents an IR spectrum with similar characteristics to those obtained with PET wastes, but with fewer peaks and bands with less intensity, in particular for the PAN-8240 sample. This can be reflected by the stretching and deformation modes of NH bond in the range 3100 – 3300 cm-1 and 1520 – 1650 cm-1, respectively. Also, stretching mode associated to C–N, C=N, can contributed to the profile of IR spectrum around 1170 cm-1, 1585 – 1770 cm-1. And the TGA methods was used to study the loses of the precursors mass according to the excessive of the temperature. The results showed that, there were different decreasing of the mass of each precursors. PAN degradation started at almost 573 K and at 1073 K, PAN preserve more than 40% of the initial mass. PET degradation started at 650 K, but at 1073 K, it has lost 80% of the initial mass. However, the mixture of PET-PAN (1:1w/w) showed a thermogravimetric profile between the two polymers tested individually, with a final mass slightly less than 30%. From a chemical point of view, the carbonisation of PET mainly occurs in one step between 650 and 775 K.