9 resultados para L Cv Sparkle
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
We used 2012 sap flow measurements to assess the seasonal dynamics of daily plant transpiration (ETc) in a high-density olive orchard (Olea europaea L. cv. ‘Arbequina’) with a well-watered (HI) control treatment A to supply 100 % of the crop water needs, and a moderately (MI) watered treatment B that replaced 70% of crop needs. To assure that treatment A was well-watered, we compared field daily ETc values against ETc obtained with the Penman-Monteith (PM) combination equation incorporating the Orgaz et al. (2007) bulk daily canopy conductance (gc) model, validated for our non-limiting conditions. We then tested the hypothesis of indirectly monitoring olive ETc from readily available vegetation index (VI) and ground-based plant water stress indicator. In the process we used the FAO56 dual crop coefficient (Kc) approach. For the HI olive trees we defined Kcb as the basal transpiration coefficient, and we related Kcb to remotely sensed Soil Adjusted Vegetation Index (SAVI) through a Kcb-SAVI functional relationship. For the MI treatment, we defined the actual transpiration ETc as the product of Kcb and the stress reduction coefficient Ks obtained as the ratio of actual to crop ETc, and we correlated Ks with MI midday stem water potential (ψst) values through a Ks-ψ functional relationship. Operational monitoring of ETc was then implemented with the ETc = Kcb(SAVI)Ks(ψ)ETo relationship stemmed from the FAO56 approach and validated taking as inputs collected SAVI and ψst data reporting to year 2011. Low validation error (6%) and high goodness-of-fit of prediction were observed (R2 = 0.94, RSME = 0.2 mm day-1, P = 0.0015), allowing to consider that under field conditions it is possible to predict ETc values for our hedgerow olive orchards if SAVI and water potential (ψst) values are known.
Resumo:
The effects of plant density and the number of emitters per Styrofoam box on plant growth and nitrate (NO3-) concentration were evaluated in spinach (Spinacia oleracea L. cv. Tapir). Spinach seedlings were transplanted at 45 days after emergence into Styrofoam boxes filled with the substrate and were grown during winter in an unheated greenhouse with no supplemental lighting. The experiment was carried out with four treatments, including two plant densities (160 and 280 plants/m2) and two number of emitters per Styrofoam box (4 and 8 emitters). Each planting box was irrigated daily and fertigated with a complete nutrient solution. Shoot dry weight was not affected by plant density. However, yield increased with plant density and emitter number. Leaf-blade NO3- concentration was not affected by the interaction between plant density and number of emitters, but petioles NO3- concentration was greater in treatment with 160 plants/m2 and 8 emitters. Although leaf-blade NO3- concentration was not affected by plant density, it decreased with the number of emitters. On the other hand, petiole NO3- concentration was not affected by plant density or number of emitters. Leaf-blade NO3- concentration ranged from 3.2 to 4.1 mg/g fresh weight, occurring the highest value in the treatment with 280 plants/m2 and 4 emitters. Petiole NO3- concentration ranged from 3.5 to 5.3 mg/g fresh weight, values that were higher than allowed by EU regulation.
Resumo:
Abstract The effects of three commercial substrates (a mixture of forest residues, composted grape husks, and white peat, black peat and coir) on plant growth and nitrogen (N) and nitrate (NO3) concentration and content were evaluated in spinach (Spinacia oleracea L. cv. Tapir). Spinach seedlings were transplanted at 45 days after emergence into Styrofoam boxes filled with the substrates and were grown during winter and early spring in an unheated greenhouse with no supplemental lighting. Each planting box was irrigated daily by drip and fertilized with a complete nutrient solution. The NO3 content of the drainage water was lower in coir than in the other substrates. However, shoot NO3 concentration was not affected by substrate type, while yield and total shoot N and NO3 content were greater when plants were grown in peat than in the mixed substrate or the coir. Leaf chlorophyll meter readings provided a good indication of the amount of N in the plants and increased linearly with total shoot N. Keywords Spinacia oleracea; chlorophyll meter; coir; peat; soilless culture systems
Resumo:
The effects of three commercial substrates (a mixture of forest residues, composted grape husks, and white peat, black peat and coir) on plant growth and nitrogen (N) and nitrate (NO3) concentration and content were evaluated in spinach (Spinacia oleracea L. cv. Tapir). Spinach seedlings were transplanted at 45 days after emergence into Styrofoam boxes filled with the substrates and were grown during winter and early spring in an unheated greenhouse with no supplemental lighting. Each planting box was irrigated daily by drip and fertilized with a complete nutrient solution. The NO3 content of the drainage water was lower in coir than in the other substrates. However, shoot NO3 concentration was not affected by substrate type, while yield and total shoot N and NO3 content were greater when plants were grown in peat than in the mixed substrate or the coir. Leaf chlorophyll meter readings provided a good indication of the amount of N in the plants and increased linearly with total shoot N.
Resumo:
Vitis vinifera L. cv. Crimson Seedless is a late season red table grape developed in 1989, with a high market value and increasingly cultivated under protected environments to extend the availability of seedless table grapes into the late fall. The purpose of this work was to evaluate leaf water potential and sap flow as indicators of water stress in Crimson Seedless vines under standard and reduced irrigation strategy, consisting of 70 % of the standard irrigation depth. Additionally, two sub-treatments were applied, consisting of normal irrigation throughout the growing season and a short irrigation induced stress period between veraison and harvest. Leaf water potential measurements coherently signaled crop-available water variations caused by different irrigation treatments, suggesting that this plant-based method can be reliably used to identify water-stress conditions. The use of sap flow density data to establish a ratio based on a reference ‘well irrigated vine’ and less irrigated vines can potentially be used to signal differences in the transpiration rates, which may be suitable for improving irrigation management strategies while preventing undesirable levels of water stress. Although all four irrigation strategies resulted in the production of quality table grapes, significant differences (p ≤ 0.05) were found in both berry weight and sugar content between the standard irrigation and reduced irrigation treatments. Reduced irrigation increased slightly the average berry size as well as sugar content and technical maturity index. The 2-week irrigation stress period had a negative effect on these parameters.
Resumo:
Abstract Vitis vinifera L. cv. Crimson Seedless is a late season red table grape developed in 1989, with a high market value and increasingly cultivated under protected environments to extend the availability of seedless table grapes into the late fall. The purpose of this work was to evaluate leaf water potential and sap flow as indicators of water stress in Crimson Seedless vines under standard and reduced irrigation strategy, consisting of 70 % of the standard irrigation depth. Additionally, two sub-treatments were applied, consisting of normal irrigation throughout the growing season and a short irrigation induced stress period between veraison and harvest. Leaf water potential measurements coherently signaled crop-available water variations caused by different irrigation treatments, suggesting that this plant-based method can be reliably used to identify water-stress conditions. The use of sap flow density data to establish a ratio based on a reference ‘well irrigated vine’ and less irrigated vines can potentially be used to signal differences in the transpiration rates, which may be suitable for improving irrigation management strategies while preventing undesirable levels of water stress. Although all four irrigation strategies resulted in the production of quality table grapes, significant differences (p ≤ 0.05) were found in both berry weight and sugar content between the standard irrigation and reduced irrigation treatments. Reduced irrigation increased slightly the average berry size as well as sugar content and technical maturity index. The 2-week irrigation stress period had a negative effect on these parameters.
Resumo:
Berry size and crop yield are widely recognized as important factors that contribute to wine quality. The final berry size indirectly affects the phenolic concentration of the wine due to skin surface-to-berry volume ratio. The effects of different irrigation levels, soil management and plant crop level on growth of ‘Trincadeira’ berries were studied. In order to test the influence of different irrigation levels (rainfed, pre-veraison and post-veraison), different soil management (tillage and natural cover crops) and different plant crop levels (8 and 16 clusters per vine), leaf water potential, skin anthocyanin, polyphenols, berry skin and seed fresh weight were measured in fruits. The segregation of berries into three different berry classes: small, medium and large, allowed to identify different levels of contribution of soil management and irrigation level into berry, skin and seeds ratios. As expected, higher water availability due to irrigation and soil tillage management during berry development induced an increase in berry flesh weight and this was more evident in larger berries; however, berry skin and seed fresh weight remained unchanged. Also, anthocyanins did not show significant differences.
Resumo:
The impact of different irrigation scheduling regimes on the water use, yield and water productivity from a high-density olive grove cv. Cobrançosa in southern Portugal was assessed during the irrigation seasons of 2011, 2012, 2013 and 2014. The experiments were conducted in a commercial olive orchard at the Herdade Álamo de Cima, near Évora (38o 29' 49.44'' N, 7o 45' 8.83'' W; alt. 75 m) in southern Alentejo, Portugal. The orchard was established with 10-year old Cobrançosa trees in grids of 8.0 x 4.2 m (300 trees ha-1) in the E-W direction, and experiments conducted on a shallow sandy loam Regosoil Haplic soil. From mid-May to the end of September the orchard was irrigated and three plots were subjected to one of two irrigation treatments: a control treatment A, irrigated to replace 100% ETc, a moderate deficit irrigation treatment B irrigated to 70% of ETc, and a more severe deficit irrigation treatment C that provided for approximately 50% of ETc. Daily tree transpiration rates were obtained by continuously monitoring of sap flow in representative trees per treatment. Among the irrigated treatments, water use efficiency (WUE, ratio of water used to irrigation- water applied) of treatment C was the highest, with a value of 0.89, being treatment B slightly lower, with a WUE of 0.76. Olive harvest for 2012 was an exceptional “on year”. Bearing yields showed contrasting differences within years where an “on year” was followed by an “off year”. In 2011 and 2012 treatment B yields were 41 and 50% higher than treatment C, respectively. In 2013 treatment B yield was 45% higher than yield of the fully irrigated treatment A, and treatment C showed practically the same yield than treatment A. In the “on year” of 2014 treatment B averaged 48% higher yield than treatment C. Treatment B farm irrigation water productivity (WPI-Farm, ratio of yield to water applied) was the highest among all treatments. Treatment A showed the lowest conversion efficiency of all treatments, indicating treatment B as the adequate deficit irrigation treatment for our Cobrançosa orchard
Resumo:
A oliveira tem sido multiplicada ao longo dos tempos por métodos convencionais de propagação vegetativa como a enxertia e a estacaria lenhosa e semilenhosa. No entanto, estes métodos revelam-se lentos ou ineficientes para determinadas cultivares. No caso da cv. ‘Galega Vulgar’, ainda com grande expressão no olival português, e de difícil enraizamento por estacaria semilenhosa, tem sido usada a micropropagação de modo a contornar essas limitações e assim obter um elevado número de plantas em curto período de tempo. O custo final de produção por este processo ainda é elevado, podendo comprometer a sua aplicação a nível comercial. Grande parte dos custos estão relacionados com a fase de enraizamento in vitro que carece de ambiente estéril e condições de assépsia para a sua execução. Com vista a uma redução de custos associados a esta fase de produção, pretendeu-se com este trabalho testar a viabilidade do enraizamento ex vitro, na ausência de condições de assépsia. Este método poderá permitir uma significativa redução da mão-de-obra, ao mesmo tempo que facilitará a aclimatização das plantas e a obtenção de um sistema radicular de melhor qualidade. Compararam-se as taxas de enraizamento in vitro (controlo), com as obtidas ex vitro. Foram utilizados explantes provenientes de dois clones da cv. ‘Galega Vulgar’, (cl. 1441 e cl. 2022) cultivados e mantidos in vitro há vários anos no Laboratório de Melhoramento e Biotecnologia da Universidade de Évora. Para além do clone foi avaliada a influência do tipo de estaca (basal e apical), da hormona de enraizamento (AIB e ANA), da sua concentração (540 e 3000 ppm) e ainda de dois substratos, Preformas Jiffy® e pastilhas de fibra coco. Os melhores resultados foram obtidos com o clone 1441 em pastilhas de fibra de coco prensada, com o uso de estacas basais. Quanto à auxina, não se observaram diferenças significativas entre a utilização de ANA na concentração de 540 ppm e AIB na concentração de 3000 ppm. A aclimatização das plantas foi conseguida com taxas elevadas de sucesso, independentemente do tratamento utilizado. Conclui-se que a aplicação do método de enraizamento ex vitro simplifica procedimentos e mantém taxas de enraizamento elevadas, conduzindo assim a uma efetiva redução de tempo e custos associados; Simplifying procedures for in vitro propagation of olive “Olea europaea L.” Abstract: The olive tree has been multiplied throughout the ages by conventional methods of vegetative propagation such as grafting and wood or softwood cuttings. These propagation methods are somehow inefficient for certain cultivars. For the CV. ‘Galega Vulgar‘, still with great expression in Portuguese olive orchards, propagation has been attempted by in vitro culture in order to circumvent these limitations and so obtain a large number of plants in short time period. The final production fees associated to this process are still high which may compromise its application to a commercial level. Most of this process fees are related to the in vitro rooting phase which lacks sterile and aseptic conditions for its implementation. Aiming to reduce the costs associated with this production phase, this work tested the feasibility of the ex vitro rooting in the absence of aseptic conditions, which can allow a significant reduction of the manpower involved and an easier plant acclimatization due to its transplant with a balled-root system. In vitro rooting rates (control) were compared with those obtained with the ex vitro experiments. Explants from two clones of the cv. ‘Galega Vulgar‘ (cl. 1441 and cl. 2022), grown and maintained in vitro for several years in the Laboratory of Biotechnology and Plant Breeding of the University of Évora, were used in the trials. In addition to the clone, the effect of the cutting type (basal and apical), the rooting hormone (AIB and ANA), their concentration (540 and 3000 ppm) and two substrates, Preformas Jiffy ® and pressed coco fiber pellets, were also evaluated. The best results were obtained with the clone 1441, when rooted in pressed coco fiber pellets, using basal cuttings. Under this conditions no significant differences were observed between the use of ANA at 540 ppm or AIB in the 3000 ppm. Acclimatization of plants was achieved with high rates of success, regardless of the treatment used. It can be concluded that the application of the ex vitro rooting method allows to maintain high rooting rates, contributing for an effective reduction of time and fees of the rooting process.