1 resultado para Integral equations
em Repositório Científico da Universidade de Évora - Portugal
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (7)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (7)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (14)
- Aston University Research Archive (19)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (5)
- Biblioteca Digital de Artesanías de Colombia (2)
- Biblioteca Digital de la Universidad Católica Argentina (4)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (11)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (5)
- Brock University, Canada (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (26)
- CaltechTHESIS (31)
- Cámara de Comercio de Bogotá, Colombia (5)
- Cambridge University Engineering Department Publications Database (98)
- CentAUR: Central Archive University of Reading - UK (34)
- Center for Jewish History Digital Collections (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (91)
- Collection Of Biostatistics Research Archive (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (5)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (2)
- Funes: Repositorio digital de documentos en Educación Matemática - Colombia (7)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (1)
- Greenwich Academic Literature Archive - UK (5)
- Helda - Digital Repository of University of Helsinki (6)
- Indian Institute of Science - Bangalore - Índia (193)
- Infoteca EMBRAPA (2)
- Instituto Politécnico do Porto, Portugal (3)
- Massachusetts Institute of Technology (3)
- Memorial University Research Repository (1)
- Nottingham eTheses (3)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (52)
- Queensland University of Technology - ePrints Archive (173)
- Repositório Científico da Universidade de Évora - Portugal (1)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (3)
- Repositório Institucional da Universidade de Aveiro - Portugal (4)
- Repositorio Institucional de la Universidad Nacional Agraria (6)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (38)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (3)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (8)
- Université de Montréal, Canada (1)
- University of Michigan (22)
- University of Queensland eSpace - Australia (32)
Resumo:
In this work we study an Hammerstein generalized integral equation u(t)=∫_{-∞}^{+∞}k(t,s) f(s,u(s),u′(s),...,u^{(m)}(s))ds, where k:ℝ²→ℝ is a W^{m,∞}(ℝ²), m∈ℕ, kernel function and f:ℝ^{m+2}→ℝ is a L¹-Carathéodory function. To the best of our knowledge, this paper is the first one to consider discontinuous nonlinearities with derivatives dependence, without monotone or asymptotic assumptions, on the whole real line. Our method is applied to a fourth order nonlinear boundary value problem, which models moderately large deflections of infinite nonlinear beams resting on elastic foundations under localized external loads.