4 resultados para Input impedance
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
No número 18 do “Boletim Trimestral” apresentámos os principais resultados do estudo que elaborou a Matriz Input-Output da Região Alentejo (MIO-Alentejo). Com este texto prosseguimos o propósito de divulgação dos resultados e conclusões do projeto, mas adotando agora uma perspectiva mais focalizada. Em particular, interessa-nos de momento olhar para o processo de formação do valor acrescentado, ou, de forma equivalente, para a distribuição do rendimento gerado na produção, sob a forma de remuneração dos diferentes fatores produtivos (3º quadrante). Nos pontos 2, 3, e 4 apresentamos os resultados e, em conclusão, deixamos algumas considerações finais no ponto 5. Anexamos um glossário com uma breve descrição metodológica.
Resumo:
Solar radiation takes in today's world, an increasing importance. Different devices are used to carry out spectral and integrated measurements of solar radiation. Thus the sensors can be divided into the fallow types: Calorimetric, Thermomechanical, Thermoelectric and Photoelectric. The first three categories are based on components converting the radiation to temperature (or heat) and then into electrical quantity. On the other hand, the photoelectric sensors are based on semiconductor or optoelectronic elements that when irradiated change their impedance or generate a measurable electric signal. The response function of the sensor element depends not only on the intensity of the radiation but also on its wavelengths. The radiation sensors most widely used fit in the first categories, but thanks to the reduction in manufacturing costs and to the increased integration of electronic systems, the use of the photoelectric-type sensors became more interesting. In this work we present a study of the behavior of different optoelectronic sensor elements. It is intended to verify the static response of the elements to the incident radiation. We study the optoelectronic elements using mathematical models that best fit their response as a function of wavelength. As an input to the model, the solar radiation values are generated with a radiative transfer model. We present a modeling of the spectral response sensors of other types in order to compare the behavior of optoelectronic elements with other sensors currently in use.
Resumo:
The paper discusses the evaluation of the uncertainty of a multivariate quantity using the Law of Propagation of Uncertainty defined in the Guide to the Expression of Uncertainty in Measurement (GUM) and a Monte Carlo method according to the GUM’s Supplement 2. The quantity analysed is the electrical impedance, which is not a scalar but a complex quantity. The used measuring method allows the evaluation of the impedance and of its uncertainty in different ways and the corresponding results are presented, compared and discussed. For comparison purposes, results of the impedance uncertainty obtained using the NIST Uncertainty Machine are also presented.
Resumo:
This paper compares the performance of the complex nonlinear least squares algorithm implemented in the LEVM/LEVMW software with the performance of a genetic algorithm in the characterization of an electrical impedance of known topology. The effect of the number of measured frequency points and of measurement uncertainty on the estimation of circuit parameters is presented. The analysis is performed on the equivalent circuit impedance of a humidity sensor.