2 resultados para Information security evaluation

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The 10th European Conference on Information Systems Management is being held at The University of Evora, Portugal on the 8 /9 September 2016. The Conference Chair is Paulo Silva and the Programme Chairs are Prof. Rui Quaresma and Prof. António Guerreiro. ECISM provides an opportunity for individuals researching and working in the broad field of information systems management, including IT evaluation to come together to exchange ideas and discuss current research in the field. This has developed into a particularly important forum for the present era, where the modern challenges of managing information and evaluating the effectiveness of related technologies are constantly evolving in the world of Big Data and Cloud Computing. We hope that this year’s conference will provide you with plenty of opportunities to share your expertise with colleagues from around the world. The keynote speakers for the Conference are Carlos Zorrinho from the Portuguese Delegation and Isabel Ramos from University of Minho, Portugal. ECISM 2016 received an initial submission of 84 abstracts. After the double blind peer review process 25 aca demic papers, 7 PhD research papers, 3 Masters research paper and 5 work in progress papers have been ac cepted for publication in these Conference Proceedings. These papers represent research from around the world, including Belgium, Brazil, China, Czech Republic, Kazakhstan, Malaysia, New Zealand, Norway, Oman, Poland, Portugal, South Africa, Sweden, The Netherlands, UK and Vietnam.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents our work at 2016 FIRE CHIS. Given a CHIS query and a document associated with that query, the task is to classify the sentences in the document as relevant to the query or not; and further classify the relevant sentences to be supporting, neutral or opposing to the claim made in the query. In this paper, we present two different approaches to do the classification. With the first approach, we implement two models to satisfy the task. We first implement an information retrieval model to retrieve the sentences that are relevant to the query; and then we use supervised learning method to train a classification model to classify the relevant sentences into support, oppose or neutral. With the second approach, we only use machine learning techniques to learn a model and classify the sentences into four classes (relevant & support, relevant & neutral, relevant & oppose, irrelevant & neutral). Our submission for CHIS uses the first approach.