5 resultados para Improvement, reclamation, fertilisation, irrigation etc., of lands (Melioration)

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of different irrigation scheduling regimes on the water use, yield and water productivity from a high-density olive grove cv. Cobrançosa in southern Portugal was assessed during the irrigation seasons of 2011, 2012, 2013 and 2014. The experiments were conducted in a commercial olive orchard at the Herdade Álamo de Cima, near Évora (38o 29' 49.44'' N, 7o 45' 8.83'' W; alt. 75 m) in southern Alentejo, Portugal. The orchard was established with 10-year old Cobrançosa trees in grids of 8.0 x 4.2 m (300 trees ha-1) in the E-W direction, and experiments conducted on a shallow sandy loam Regosoil Haplic soil. From mid-May to the end of September the orchard was irrigated and three plots were subjected to one of two irrigation treatments: a control treatment A, irrigated to replace 100% ETc, a moderate deficit irrigation treatment B irrigated to 70% of ETc, and a more severe deficit irrigation treatment C that provided for approximately 50% of ETc. Daily tree transpiration rates were obtained by continuously monitoring of sap flow in representative trees per treatment. Among the irrigated treatments, water use efficiency (WUE, ratio of water used to irrigation- water applied) of treatment C was the highest, with a value of 0.89, being treatment B slightly lower, with a WUE of 0.76. Olive harvest for 2012 was an exceptional “on year”. Bearing yields showed contrasting differences within years where an “on year” was followed by an “off year”. In 2011 and 2012 treatment B yields were 41 and 50% higher than treatment C, respectively. In 2013 treatment B yield was 45% higher than yield of the fully irrigated treatment A, and treatment C showed practically the same yield than treatment A. In the “on year” of 2014 treatment B averaged 48% higher yield than treatment C. Treatment B farm irrigation water productivity (WPI-Farm, ratio of yield to water applied) was the highest among all treatments. Treatment A showed the lowest conversion efficiency of all treatments, indicating treatment B as the adequate deficit irrigation treatment for our Cobrançosa orchard

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Olive tree sap flow measurements were collected in an intensive orchard near Évora, Portugal, during the irrigation seasons of 2013 and 2014, to calculate daily tree transpiration rates (T_SF). Meteorological variables were also collected to calculate reference evapotranspiration (ETo). Both data were used to assess values of basal crop coefficient (Kcb) for the period of the sap flow observations. The soil water balance model SIMDualKc was calibrated with soil, biophysical ground data and sap flow measurements collected in 2013. Validated in 2014 with collected sap flow observations, the model was used to provide estimates of dual e single crop coefficients for 2014 crop growing season. Good agreement between model simulated daily transpiration rates and those obtained with sapflow measurements was observed for 2014 (R2=0.76, RMSE=0.20 mm d-1), the year of validation, with an estimation average absolute error (AAE) of 0.20 mm d-1. Olive modeled daily actual evapotranspiration resulted in atual ETc values of 0.87, 2.05 and 0.77 mm d-1 for 2014 initial, mid- and end-season, respectively. Actual crop coefficient (Kc act) values of 0.51, 0.43 and 0.67 were also obtained for the same periods, respectively. Higher Kc values during spring (initial stage) and autumn (end-stage) were published in FAO56, varying between 0.65 for Kc ini and 0.70 for Kc end. The lower Kc mid value of 0.43 obtained for the summer (mid-season) is also inconsistent with the FAO56 expected Kc mid value of 0.70 for the period. The modeled Kc results are more consistent with the ones published by Allen & Pereira [1] for olive orchards with effective ground cover of 0.25 to 0.5, which vary between 0.40 and 0.80 for Kc ini, 0.40–0.60 for Kc mid with no active ground cover, and 0.35–0.75 for Kc end, depending on ground cover. The SIMDualKc simulation model proved to be appropriate for obtaining evapotranspiration and crop coefficient values for our intensive olive orchard in southern Portugal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

tWater use control methods and water resources planning are of high priority. In irrigated agriculture, theright way to save water is to increase water use efficiency through better management. The present workvalidates procedures and methodologies using remote sensing to determine the water availability in thesoil at each moment, giving the opportunity for the application of the water depth strictly necessaryto optimise crop growth (optimum irrigation timing and irrigation amount). The analysis is applied tothe Irrigation District of Divor, Évora, using 7 experimental plots, which are areas irrigated by centre-pivot systems, cultivated to maize. Data were determined from images of the cultivated surface obtainedby satellite and integrated with atmosphere and crop parameters to calculate biophysical indicatorsand indices of water stress in the vegetation—Normalized Difference Vegetation Index (NDVI), Kc, andKcb. Therefore, evapotranspiration (ETc) was estimated and used to calculate crop water requirement,together with the opportunity and the amount of irrigation water to allocate. Although remote sensingdata available from satellite imagery presented some practical constraints, the study could contribute tothe validation of a new methodology that can be used for irrigation management of a large irrigated area,easier and at lower costs than the traditional FAO recommended crop coefficients method. The remotesensing based methodology can also contribute to significant saves of irrigation water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The production of AC was achieved using the most common industrial and consumer solid waste, namely PET, alone or blended with other synthetic polymer such PAN. The PET-PAN mixture (1:1 W/W %) was subjected to carbonization, with a pyrolysis yield off 31.9%, between that obtained with PET (16.9%) or PAN (42.6%) separately. By mixing PET, as a raw material, with PAN (different ratio), an improvement in the final yield of the AC production, for the same activation time, with CO2, was found.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The production of AC was achieved using the most common industrial and consumer solid waste, namely PET, alone or blended with other synthetic polymer such PAN. The PET-PAN mixture (1:1 W/W %) was subjected to carbonization, with a pyrolysis yield off 31.9%, between that obtained with PET (16.9%) or PAN (42.6%) separately. By mixing PET, as a raw material, with PAN (different ratio), an improvement in the final yield of the AC production, for the same activation time, with CO2, was found.