4 resultados para Image Processing, Visual Prostheses, Visual Information, Artificial Human Vision, Visual Perception
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
The neurons in the primary visual cortex that respond to the orientation of visual stimuli were discovered in the late 1950s (Hubel, D.H. & Wiesel, T.N. 1959. J. Physiol. 148:574-591) but how they achieve this response is poorly understood. Recently, experiments have demonstrated that the visual cortex may use the image processing techniques of cross or auto-correlation to detect the streaks in random dot patterns (Barlow, H. & Berry, D.L. 2010. Proc. R. Soc. B. 278: 2069-2075). These experiments made use of sinusoidally modulated random dot patterns and of the so-called Glass patterns - where randomly positioned dot pairs are oriented in a parallel configuration (Glass, L. 1969. Nature. 223: 578-580). The image processing used by the visual cortex could be inferred from how the threshold of detection of these patterns in the presence of random noise varied as a function of the dot density in the patterns. In the present study, the detection thresholds have been measured for other types of patterns including circular, hyperbolic, spiral and radial Glass patterns and an indication of the type of image processing (cross or auto-correlation) by the visual cortex is presented. As a result, it is hoped that this study will contribute to an understanding of what David Marr called the ‘computational goal’ of the primary visual cortex (Marr, D. 1982. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. New York: Freeman.)
Resumo:
A link between patterns of pelvic growth and human life history is supported by the finding that, cross-culturally, variation in maturation rates of female pelvis are correlated with variation in ages of menarche and first reproduction, i.e., it is well known that the human dimensions of the pelvic bones depend on the gender and vary with the age. Indeed, one feature in which humans appear to be unique is the prolonged growth of the pelvis after the age of sexual maturity. Both the total superoinferior length and mediolateral breadth of the pelvis continues to grow markedly after puberty, and do not reach adult proportions until the late teens years. This continuation of growth is accomplished by relatively late fusion of the separate centers of ossification that form the bones of the pelvis. Hence, in this work we will focus on the development of an intelligent decision support system to predict individual’s age based on a pelvis' dimensions criteria. Some basic image processing techniques were applied in order to extract the relevant features from pelvic X-rays, being the computational framework built on top of a Logic Programming approach to Knowledge Representation and Reasoning that caters for the handling of incomplete, unknown, or even self-contradictory information, complemented with a Case Base approach to computing.
Resumo:
It is well known that rib cage dimensions depend on the gender and vary with the age of the individual. Under this setting it is therefore possible to assume that a computational approach to the problem may be thought out and, consequently, this work will focus on the development of an Artificial Intelligence grounded decision support system to predict individual’s age, based on such measurements. On the one hand, using some basic image processing techniques it were extracted such descriptions from chest X-rays (i.e., its maximum width and height). On the other hand, the computational framework was built on top of a Logic Programming Case Base approach to knowledge representation and reasoning, which caters for the handling of incomplete, unknown, or even contradictory information. Furthermore, clustering methods based on similarity analysis among cases were used to distinguish and aggregate collections of historical data in order to reduce the search space, therefore enhancing the cases retrieval and the overall computational process. The accuracy of the proposed model is satisfactory, close to 90%.
Resumo:
Cysticercosis results from the ingestion Taenia solium eggs directly by faecal-oral route or contaminated food or water. Human tapeworm carriers who have become infected after ingesting pork meat contaminated with cysticerci release these eggs. Cysticercosis occurs after tapeworm eggs are ingested by an intermediate host (pig or human) and then hatch, migrate, and lodge in the host's tissues, where they develop onto larval cysticerci. When they lodged in the central nervous system of humans, results in the disease condition called Neurocysticercosis (NCC), with a heterogeneous manifestations depending of the locations of cysts, number, size and their stage of evolution (1). Consequently the prognostic ranges from asymptomatic to situations leading to death in 2% to 9.8%. of cases (7) In swine’s there are few studies, but recent works have proved that animals, for the same reasons, also have neurological abnormalities, expressed by seizures, stereotypic walk in circles, chewing motions with foamy salivation included tonic muscle contractions followed by a sudden diminution in all muscle tone leading to collapse (2). Conventional domestic wastewater treatment processes may not be totally effective in inactivating parasites eggs from Taenia solium, allowing some contamination of soils and agricultural products (11). In Portugal there are some evidence of aggregation of human cysticercosis cases in specific regions, bases in ecological design studies (6). There are few information about human tapeworm carriers and social and economic factors associated with them. Success in knowledge and consequently in lowering transmission is limited by the complex network of biological and social factors that maintain the spread. Effective control of mostly zoonosis require One Health approach, after a real knowledge and transparency in the information provided by the institutions responsible for both animal and human health, allowing sustained interventions targeted at the transmission cycle's crucial nodes. In general, the model used to control, reflects a rural reality, where pigs are raised freely, poor sanitation conditions and incipient sanitary inspection. In cysticercosis, pigs are obligate intermediate hosts and so considered as first targets for control and used as sentinels to monitor environmental T. solium contamination (3). Usually environmental contamination with Taenia spp. eggs is a key issue in most of studies with landscape factors influencing presence of Taenia spp. antigens in both pigs and humans (5). Soil-related factors as well as socio-economic and behavioural factors are associated with the emergence of significant clustering human cysticercosis (4,5). However scarce studies has been produced in urban environmental and in developed countries with the finality to characterize the spatial pattern. There are still few data available regarding its prevalence and spatial distribution; Transmission patterns are likely to exhibit correlations as housing conditions, water supply, basic sanitation, schooling and birthplace of the individual or relatives, more than pigs rearing free, soil conditions (9). As a matter of fact, tapeworm carriers from endemic zones can auto-infect or transmit infection to other people or arrive already suffering NCC (as a result of travelling to or being a citizen from an endemic cysticercosis country) to a free cysticercosis country. Transmission is fecal-oral; this includes transmission through person-to-person contact, through autoinfection, or through contaminated food This has been happening in different continents as North America (5.4–18% been autochthonous), Europe and Australia (7). Recently, case reports of NCC have also emerged from Muslim countries. (10). Actually, different papers relate an epidemic situation in Spain and Portugal (7, 8). However the kind of study done does not authorize such conclusion. There are no evidence that infections were acquired in Portugal and there are not characterized the mode of transmission. Papers with these kind of information will be allow to have economic consequences resulted from artificial trade barriers with serious consequences for pig producers and pig meat trade. We need transparency in information’s that allow provide the basis to support the development and targeting of future effective control programmes (and prove we need that). So, to have a real picture of the disease, it is necessary integrate data from human, animal and environmental factors surrounding human and pig cases to characterize the pattern of the transmission. The design needs to be able to capture unexpected, and not common outcomes (routine data). We need to think “One Health” to get a genuine image of the situation.