4 resultados para Hydrogen Storage Properties
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
The increasing integration of renewable energies in the electricity grid contributes considerably to achieve the European Union goals on energy and Greenhouse Gases (GHG) emissions reduction. However, it also brings problems to grid management. Large scale energy storage can provide the means for a better integration of the renewable energy sources, for balancing supply and demand, to increase energy security, to enhance a better management of the grid and also to converge towards a low carbon economy. Geological formations have the potential to store large volumes of fluids with minimal impact to environment and society. One of the ways to ensure a large scale energy storage is to use the storage capacity in geological reservoir. In fact, there are several viable technologies for underground energy storage, as well as several types of underground reservoirs that can be considered. The geological energy storage technologies considered in this research were: Underground Gas Storage (UGS), Hydrogen Storage (HS), Compressed Air Energy Storage (CAES), Underground Pumped Hydro Storage (UPHS) and Thermal Energy Storage (TES). For these different types of underground energy storage technologies there are several types of geological reservoirs that can be suitable, namely: depleted hydrocarbon reservoirs, aquifers, salt formations and caverns, engineered rock caverns and abandoned mines. Specific site screening criteria are applicable to each of these reservoir types and technologies, which determines the viability of the reservoir itself, and of the technology for any particular site. This paper presents a review of the criteria applied in the scope of the Portuguese contribution to the EU funded project ESTMAP – Energy Storage Mapping and Planning.
Resumo:
Effect of storage on physical-chemical properties and phenolics of sweet cherry from São Julião region. A.C. Agulheiro-Santos1, F. Vieira1, D. Gonzalez2, M. Lozano2, V. Palma1, A.E. Rato1 1Universidade de Évora. Instituto de Ciências Agrárias e Ambientais Mediterrânica (ICAAM). 7000 Évora, Portugal. 2Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX). Ctra. San Vicente. Finca Santa Engracia. 06071 Badajoz, Spain. Worldwide the consumption of fruit and vegetables is increasing due to the dietary guidelines recommended by nutritionist. Because of their high content on phenols, vitamins, mineral and antioxidants, berry fruits are consumed not only in fresh forms but also as processed and derivative products such as juices, yogurts, jellies and dried fruits. As a high consumed red fruit, sweet cherry has been the focus on some studies, mainly regarding bioactive compounds content. “Sweetheart” cherries from São Julião region (Alentejo, Portugal) from two different production campaigns were kept in different storage conditions in order to evaluate both the environmental and storage effect on some physical-chemical properties and phenolics. Cold conditions - Cold (1 ºC, 95% RH) and modified atmosphere - MA (1 ºC, 95% RH with micro-perforated bags of Pplus®, Sidlaw Packaging, Bristol, UK) were tested. In order to establish the appropriate storage conditions, individual phenolic acids and physical-chemical properties were analysed during two consecutive years. Results show a general decrease on phenolic compounds content between cherries from both years. It is also observed that MA conditions do not affect significantly both phenolics and physical-chemical parameters when compared with Cold conditions. Additionally, it is observed similar behaviour on Cold and MA sweet cherries regarding its pH, total soluble solids content (TSS), titratable acidity (TA) and colour and individual phenols during storage time. Concluding, these results show, as expected, changes between cultivars which may be correlated with the environmental conditions on different years. Keywords: sweet cherry, postharvest, phenols, physical-chemical, storage conditions.
Resumo:
Abstract: In Portalegre, Portugal, sweet cherry production is very important to the region’s economic sustainability. The sweet cherry ‘Sweetheart’ has exhibited short shelf life in spite of being highly appreciated by consumers due to its organoleptic characteristics. In this trial, we evaluated fruit quality of ‘Sweetheart’ stored under different storage conditions: 1) cold conditions (1ºC and high humidity 95%), 2) cold conditions and polypropylene film bags (MA), and 3) controlled atmosphere (CA) (1°C, 95% humidity, 10% CO2 and 8% O2). Fruit physical and chemical parameters were evaluated after 0, 6, 13, 20 and 27 days of cold storage. Quality parameters tested included weight loss, external colour (L* a* b*), visual assessment of the epidermis, epidermis and mesocarp penetration test, soluble solids content (SSC), and titratable acidity (TA). We also performed sensory analyses. The results for textural properties, colour coordinates and sensory analysis suggest that ‘Sweetheart’ fruit can be stored under cold conditions, 1°C, 95% humidity, for up to 21 days without significant loss of quality. Controlled atmosphere maintained tissue turgidity during storage; however, this was not noticed by the panelists, who consistently classified fruits stored under CA conditions with lower overall ratings than fruits under cold conditions with or without film bags.
Resumo:
This paper focuses on technology state of the art for the charge/discharge of electric energy storage supported by vanadium redox flow battery linked to the electric grid. Properties of vanadium, the main configuration and the reaction of charge/discharge of a vanadium redox flow battery are addressed. The vanadium redox flow battery has the highest cell voltage among the other redox flow battery, implying higher power and energy density which favours application at power plants. This electric energy storage is viewed as a promising contribution to be integrated in power system due to a reasonably bulky size and to successful applications currently allowing storage of energy at power plants or at electrical grids. For instances, allowing storage of energy as an economic improvement providing spin reserve to avoid penalty for imbalances between the energy delivered and energy contracted at closing of electricity market or as an economic improvement to diminish the cost of electricity usage of a consumer. The vanadium redox flow battery has the advantages of scalability customized to meet requirements for power and energy capacity and of excellent combination of energy efficiency, capital cost and life cycle costs compared with other technology.