3 resultados para Host-parasite relationships
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
INTRODUCTION AND GOALS: Genus Bursaphelenchus includes several pests of the world importance for the rural economy, the most dangerous are the Bursaphelenchus xylophilus (the pinewood nematode caused decline of the pine trees in south Asia and in one spot area in Europe, Portugal, Peninsula de Setubal) and the Bursaphelenchus cocophilus, causing the decline of coco-palm plantations in Carribean and Latin American regions. The peculiarity of the host-parasite association of the genus that the nematode life cycle includes three trophic components: plant (mostly a tree), insect vector and a fungus. Goals of the presentation is to list all species of the world fauna and all efficient diagnostic characters, then create the identification tool and analyze the similarity of species and possible ways and causes of the host-parasite evolution of the group. RESULTS: Complete list of species with synonymy and a catalogue of all efficient diagnostic characters with their states, selected from papers of the most experienced taxonomists of the genus, are given for the genus Bursaphelenchus. List of known records of Bursaphelenchus species with names of natural vectors and plants and their families is given (for world pests the most important groups of trees and insects are listed). The tabular, traditional and computer-aided keys are presented. Dendrograms of species relationships (UPGMA, standard distance: mean character difference) based on all efficient taxonomic characters and separately on the spicule characters only, are given. Discussion whether the species groups are natural or purely diagnostic ones is based on the relationships dendrograms and the vector and associated plant ranges of Bursaphelenchus species; the xylophilus species group (B. xylophilus, B. abruptus, B. baujardi, B. conicaudatus, B. eroshenkii, B. fraudulentus, B. kolymensis, B. luxuriosae; B. mucronatus), the hunti group (B. hunti, B. seani, B. kevini and B. fungivorus) are probably the natural ones. CONCLUSIONS: The parasitic nematode association includes three trophic components: plant, insect vector and fungus. The initial insect-plant complex Scolytidae-Pinaceae is changeable and only in rare occasions the change of the preferred vector to Cerambycidae (the xylophilus group), Hymenoptera (the hunti group) led to formation of the natural species-groups. From the analysis it is clear that although the vector range is changeable it is comparatively more important for the evolution of the genus Bursaphelenchus than associations with plants at the family level. Data on the fungi species (3rd component in natural Bursaphelenchus associations) are insufficient for the detailed comparative analysis.
Resumo:
The main objective of this research was the study of the soil nematode community, and in particular plant parasitic nematodes (PPN), from a field located in Portugal’s southern region, used for sugarbeet production. The study was performed from February to July 2003, covering part of the fallow period previous to tomato cultivation, the alternative crop in the rotation. The end of the fallow period in March and the soil preparation period in May were marked by a significant reduction in the numbers of PPN, whereas their numbers increased on the following tomato crop. The genus Helicotylenchus stood out as the most representative group, forming 90% of all PPN counted each month. The genus Heterodera was relatively abundant in the months following the previous sugarbeet crop, and numbers of the genus Meloidogyne increased during the tomato crop. The correlations between these group and environmental parameters show that, apart from the direct influence of the host, pH, organic matter, temperature and soil moisture significantly influenced nematode abundance and community composition.
Resumo:
Phylogeographic studies, which infer population history and dispersal movements from intra-specific spatial genetic variation, require expensive and time-consuming analyses that are not always feasible, especially in the case of rare or endangered species. On the other hand, comparative phylogeography of species involved in close biotic interactions may show congruent patterns depending on the specificity of the relationship. Consequently, the phylogeography of a parasite that needs two hosts to complete its life cycle should reflect population history traits of both hosts. Population movements evidenced by the parasite’s phylogeography that are not reflected in the phylogeography of one of these hosts may thus be attributed to the other host. Using the wild rabbit (Oryctolagus cuniculus) and a parasitic tapeworm (Taenia pisiformis) as an example, we propose comparing the phylogeography of easily available organisms such as game species and their specific heteroxenous parasites to infer population movements of definitive host/predator species, independently of performing genetic analyses on the latter. This may be an interesting approach for indirectly studying the history of species whose phylogeography is difficult to analyse directly.