4 resultados para Historical data usage
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
It is well known that rib cage dimensions depend on the gender and vary with the age of the individual. Under this setting it is therefore possible to assume that a computational approach to the problem may be thought out and, consequently, this work will focus on the development of an Artificial Intelligence grounded decision support system to predict individual’s age, based on such measurements. On the one hand, using some basic image processing techniques it were extracted such descriptions from chest X-rays (i.e., its maximum width and height). On the other hand, the computational framework was built on top of a Logic Programming Case Base approach to knowledge representation and reasoning, which caters for the handling of incomplete, unknown, or even contradictory information. Furthermore, clustering methods based on similarity analysis among cases were used to distinguish and aggregate collections of historical data in order to reduce the search space, therefore enhancing the cases retrieval and the overall computational process. The accuracy of the proposed model is satisfactory, close to 90%.
Resumo:
Plants of genus Schinus are native South America and introduced in Mediterranean countries, a long time ago. Some Schinus species have been used in folk medicine, and Essential Oils of Schinus spp. (EOs) have been reported as having antimicrobial, anti-tumoural and anti-inflammatory properties. Such assets are related with the EOs chemical composition that depends largely on the species, the geographic and climatic region, and on the part of the plants used. Considering the difficulty to infer the pharmacological properties of EOs of Schinus species without a hard experimental setting, this work will focus on the development of an Artificial Intelligence grounded Decision Support System to predict pharmacological properties of Schinus EOs. The computational framework was built on top of a Logic Programming Case Base approach to knowledge representation and reasoning, which caters to the handling of incomplete, unknown, or even self-contradictory information. New clustering methods centered on an analysis of attribute’s similarities were used to distinguish and aggregate historical data according to the context under which it was added to the Case Base, therefore enhancing the prediction process.
Resumo:
It is well known that human resources play a valuable role in a sustainable organizational development. Indeed, this work will focus on the development of a decision support system to assess workers’ satisfaction based on factors related to human resources management practices. The framework is built on top of a Logic Programming approach to Knowledge Representation and Reasoning, complemented with a Case Based approach to computing. The proposed solution is unique in itself, once it caters for the explicit treatment of incomplete, unknown, or even self-contradictory information, either in terms of a qualitative or quantitative setting. Furthermore, clustering methods based on similarity analysis among cases were used to distinguish and aggregate collections of historical data or knowledge in order to reduce the search space, therefore enhancing the cases retrieval and the overall computational process.
Resumo:
O processamento de linguagem natural e as ontologias são ferramentas cuja interação permite uma melhor compreensão dos dados armazenados. Este trabalho, ao associar estas duas áreas aos elementos disponíveis numa base de dados prosopográfica, tornou possível identificar e classificar relacionamentos entre setores de ocupação na forma como eram designados na época, setores de atividade num formato mais próximo do de hoje e o estatuto social que essas incumbências tinham na sociedade coeva. Os dados utilizados são sobretudo de membros do Santo Ofício – do século XVI ao século XVIII. Para atingir este objetivo utilizaram-se algumas descrições textuais de ocorrências da época e outras pouco estruturadas, disponíveis no repositório SPARES. A aplicação de processamento de linguagem natural (remoção de stopwords e aplicação de stemming), conjugada com a construção de duas ontologias, tornou possível classificar esses dados, permitindo consultas mais eficazes. Ao contribuir para a classificação automática de dados históricos, propõem-se metodologias que podem ser aplicadas em dados de qualquer outra área do conhecimento, especialmente as que lidam com as variáveis de tempo e espaço de forma mais intensa; Abstract: OntoSPARES: from natural language to ontologies Contributions to the automatic classification of historical data (16th-18th centuries) The interaction between the natural language processing and ontologies are tools allowing a better understanding of the data stored. This work, by combining these two areas to the elements available in a prosopographic database, has made possible to identify and classify relationships between occupations of many individuals (in general Holy Office members of the 16th-18th centuries). To achieve this goal the data used was gathered in SPARES repository, including some textual descriptions of the time occurrences. They are all few structured. The application of natural language processing (stopwords removal and stemming application), combined with the construction of two ontologies, made possible to classify those data, allowing a more effective search. By contributing to the automatic classification of historical data, this thesis proposes methodologies that can be applied to data from any other field of knowledge, specially data dealing with time and space variables.