2 resultados para Heat tranfer in vessel
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
Reinterpretation of old heat flow data or use of new data and new techniques of detection of the temperature under the surface have conducted to new heat flow density values in some regions of the globe. The problem of ice melting in Greenland and Antarctica caught the public's attention to the importance of knowledge on heat flow values and thermal structure of the globe. In the last years, several models were presented trying to obtain lithosphere and Moho thickness of the Iberia Peninsula. The work we intend to present is related with the SW part of the Iberia Peninsula ( south of the Ossa Morena zone, South Portuguese Zone and Algarve). The results obtained show a decrease in the thickness of the crust and the lithosphere in this region. Density anomalies in the crust are also referred. I intend to make the connection between the results of these models and the heat flow thermal conductivity, heat production and geological data available for the region, trying to explain the results of heat flow density data obtained.
Resumo:
Rhizobia are important soil bacteria due to their ability to establish nitrogen-fixing symbioses with legume plants. In this dual lifestyle, as free-living bacteria or as plant symbiont, rhizobia are often exposed to different environmental stresses. The present chapter overviews the current knowledge on the heat shock response of rhizobia, highlighting how these large genome bacteria respond to heat from a transcriptional point of view. Response to heat shock in rhizobia involves genome wide changes in the transcriptome that may affect more than 30% of the genome and involve all replicons. In addition to the expected upregulation of genes already known to be involved in stress response (dnaK, groEL, ibpA, clpB), the reports on the heat shock response in rhizobia also showed particular aspects of stress response in these resourceful bacteria. The transcriptional response to heat in rhizobia includes the overexpression of a large number of genes involved in transcription and carbohydrate transport and metabolism. Additional studies are needed in order to better understand the transcriptional regulation of stress response in bacteria with large genomes.