2 resultados para Growth-promoting rhizobacteria

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study is to understand the biological role of Serratia quinivorans BXF1, a bacterium commonly found associated with Bursaphelenchus xylophilus, the plant parasitic nematode responsible for pine wilt disease. Therefore, we studied strain BXF1 effect in pine wilt disease. We found that strain BXF1 promoted in vitro nematode reproduction. Moreover, the presence of bacteria led to the absence of nematode chitinase gene (Bxcht-1) expression, suggesting an effect for bacterial chitinase in nematode reproduction. Nevertheless, strain BXF1 was unable to colonize the nematode interior, bind to its cuticle with high affinity or protect the nematode from xenobiotic stress. Interestingly, strain BXF1 was able to promote tomato and pine plant-growth, as well as to colonize its interior, thus, acting like a plant-growth promoting endophyte. Consequently, strain BXF1 failed to induce wilting symptoms when inoculated in pine shoot artificial incisions. This bacterium also presented strong antagonistic activities against fungi and bacteria isolated from Pinus pinaster. Our results suggest that B. xylophilus does not possess a strict symbiotic community capable of inducing pine wilt disease symptoms as previously hypothesized. We show that bacteria like BXF1, which possess plant-growth promoting and antagonistic effects, may be opportunistically associated with B. xylophilus, possibly acquired from the bacterial endophytic community of the host pine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vegetative propagation of superior conifer trees can be achieved e.g. through rooted cuttings or rooted microshoots, the latter predominantly through in vitro tissue culture. Both techniques are used to achieve rapid multiplication of trees with favorable genetic combinations and to capture a large proportion of the genetic diversity in a single generation cycle. However, adventitious rooting of shoots (cuttings) is often not efficient due to various problems such as scarcity of roots and cessation of their growth, both of which limit the application of vegetative propagation in some conifer species. Many factors are involved in the adventitious rooting of shoots including physical and chemical ones such as plant growth regulators, carbohydrates, light quality, temperature and rooting substrates or media (reviewed by Ragonezi et al. 2010). The focus of this review is on biological factors, such as inoculations with Agrobacterium rhizogenes, plant- growth-promoting rhizobacteria and other endophytes, and mycorrhizal fungi, which were found to stimulate adventitious rooting. These microorganisms could contribute not only to adventitious root development but also help in protecting conifer plants against pathogenic microorganisms, facilitate acclimation and transplanting, and contribute to more sustainable, chemical-free forests.