3 resultados para Fossil fuels

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Stirling engines with parabolic dish for thermal to electric conversion of solar energy is one of the most promising solutions of renewable energy technologies in order to reduce the dependency from fossil fuels in electricity generation. This paper addresses the modelling and simulation of a solar powered Stirling engine system with parabolic dish and electric generator aiming to determine its energy production and efficiency. The model includes the solar radiation concentration system, the heat transfer in the ther- mal receiver, the thermal cycle and the mechanical and electric energy conversion. The thermodynamic and energy transfer processes in the engine are modelled in detail, including all the main processes occur- ring in the compression, expansion and regenerator spaces. Starting from a particular configuration, an optimization of the concentration factor is also carried out and the results for both the transient and steady state regimes are presented. It was found that using a directly illuminated thermal receiver with- out cavity the engine efficiency is close to 23.8% corresponding to a global efficiency of 10.4%. The com- ponents to be optimized are identified in order to increase the global efficiency of the system and the trade-off between system complexity and efficiency is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Face aos padrões atuais de vida, em que despendemos a maior parte do nosso tempo no interior de edifícios, com um nível de conforto que ninguém quer abdicar, urge o desenvolvimento de tecnologias de climatização sustentáveis. Devido a uma combinação única de fatores, casas de baixo consumo de energia (e também casas passivas) em Portugal, são particularmente adequadas de explorar as vantagens da energia solar térmica, especialmente quando combinado com armazenamento sazonal de energia. No entanto nenhum exemplo documentado existe de como esta sinergia pode ser explorada com sucesso em Portugal, ilustrando assim o modo em que a necessidade de aquecimento pode ser colmatada de uma forma sustentável sem o uso de combustíveis fósseis. A energia solar é uma excelente alternativa de fonte de energia para aquecimento de edifícios. Um principal fator que limita a sua aplicação é que é uma fonte de energia com uma disponibilidade média de variação cíclica. O uso de armazenamento sazonal de energia pode reduzir substancialmente o custo do sistema solar que é capaz de fornecer até 100% das necessidades energéticas dos edifícios. Estes sistemas são projetados para armazenar a energia solar durante o verão e reter o calor armazenado para posterior utilização durante o inverno; Abstract: SEASONAL SOLAR THERMAL ENERGY STORAGE FOR LOW TEMPERATURE HEATING BUILDINGS. Given the current standards of living, where we spent most of our time inside buildings, with a level of Comfort that no one wants to give up, urges the development of sustainable climate control technologies. Due to a unique combination of factors, low energy (and also passive) houses in Portugal are particularly well suited to exploiting the advantages of solar thermal energy especially when combined with seasonal energy storage. However no documented example there of how this synergy can be exploited successfully in Portugal, illustrating the way in which the need for heating can be addressed in a sustainable manner without the use of fossil fuels. Solar energy is an important alternative energy source for heating applications. One main factor that limits its application is that it is an energy source with an average availability of cyclical variation. The use of seasonal thermal energy storage can substantially reduce the cost of solar energy systems that can supply up to 100% of buildings energy needs. Such systems are designed to collect solar energy during the summer and retain the stored heat for use during the winter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Since black carbon concentrations are useful to reveal changes in anthropogenic activities, measurements taken from 2007 to 2015 in a Portuguese city are used to assess to which extent the ambient air was impacted by the economic crisis. The average black carbon concentrations are representative of an urban area of small size (1.3 ± 1.3 μg m−3). The highest concentrations are observed in the heating season, being biomass combustion one of the causes for the high values. The daily cycle of black carbon concentrations presents both morning and evening peaks, mainly due to road traffic and, in the heating season, to domestic heating as well. The yearly averaged black carbon mass concentrations decreased 33 % from 2007 to 2015, possibly due to a combination of the economic recession and environmental legislation. The reduction in road traffic led to a decrease in the daily morning peak from 2007 to 2015. This reduction was not followed by a decrease in the evening peak, explained by an increase in biomass burning. Biomass is the cheapest heating fuel in Portugal, and its consumption increased in the aftermath of the economic crisis. The use of bioenergy is an alternative to fossil fuels and presents many advantages. However, energy policies should discourage inefficient biomass burning and promote better ways of exploiting the available energy resources and emission air pollution mitigation strategies.