7 resultados para Environmental modelling

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The metapopulation paradigm is central in ecology and conservation biology to understand the dynamics of spatially-structured populations in fragmented landscapes. Metapopulations are often studied using simulation modelling, and there is an increasing demand of user-friendly software tools to simulate metapopulation responses to environmental change. Here we describe the MetaLandSim R package, mwhich integrates ideas from metapopulation and graph theories to simulate the dynamics of real and virtual metapopulations. The package offers tools to (i) estimate metapopulation parameters from empirical data, (ii) to predict variation in patch occupancy over time in static and dynamic landscapes, either real or virtual, and (iii) to quantify the patterns and speed of metapopulation expansion into empty landscapes. MetaLandSim thus provides detailed information on metapopulation processes, which can be easily combined with land use and climate change scenarios to predict metapopulation dynamics and range expansion for a variety of taxa and ecological systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We analysed the viscera of 321 red foxes collected over the last 30 years in 34 of the 47 provinces of peninsular Spain, and identified their helminth parasites. We measured parasite diversity in each sampled province using four diversity indices: Species richness, Marg a l e f’s species richness index, Shannon’s species diversity index, and inverse Simpson’s index. In order to find geographical, environmental, and/or human-related predictors of fox parasite diversity, we recorded 45 variables related to topography, climate, lithology, habitat heterogeneity, land use, spatial situation, human activity, sampling effort, and fox presence probability (obtained after environmental modelling of fox distribution). We then performed a stepwise linear regression of each diversity index on these variables, to find a minimal subset of statistically significant variables that account for the variation in each diversity index. We found that most parasite diversity indices increase with the mean distance to urban centres, or in other words, foxes in more rural provinces have a more diverse helminth fauna. Sampling effort and fox presence probability (probably related to fox density) also appeared as conditioning variables for some indices, as well as soil permeability (related with water availability). We then extrapolated the models to predict these fox parasite diversity indices in non-sampled provinces and have a view of their geographical trends.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transferring distribution models between different geographical areas may be problematic, as the performance of models outside their original scope is hard to predict. A modelling procedure is needed that gets the gist of the environmental descriptors of a distribution area, without either overfitting to the training data or overestimating the species’ distribution potential.We tested the transferability power of the favourability function, a generalized linear model, on the distribution of the Iberian desman (Galemys pyrenaicus) in the Iberian territories of Portugal and Spain.We also tested the effects of two of the main potential constraints on model transferability: the analysed ranges of the predictor variables, and the completeness of the species distribution data. We modelled 10 km×10km presence/absence data from Portugal and Spain separately, extrapolated each model to the other country, and compared predictions with observations. The Spanish model, despite arguably containing more false absences, showed good predictive ability in Portugal. The Portuguese model, whose predictors ranged between only a subset of the values observed in Spain, overestimated desman distribution when transferred.We discuss possible reasons for this differential model behaviour, and highlight the importance of this kind of models for prediction and conservation applications

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we used the information of the Annual Hunting Reports (AHRs) to obtain a high-resolution model of the potential favourableness for wild rabbit harvesting in Andalusia (southern Spain), using environmental and land-use variables as predictors. We analysed 32,134 AHRs from the period 1993/2001 reported by 6049 game estates to estimate the average hunting yields of wild rabbit in each Andalusian municipality (n5771). We modelled the favourableness for obtaining good hunting yields using stepwise logistic regression on a set of climatic, orographical, land use, and vegetation variables. The favourability equation was used to create a downscaled image representing the favourableness of obtaining good hunting yields for the wild rabbit in 161 km squares in Andalusia, using the Idrisi Image Calculator. The variables that affected hunting yields of wild rabbit were altitude, dry wood crops (mainly olive groves, almond groves, and vineyards), temperature, pasture, slope, and annual number of frost days. The 161 km squares with high favourableness values are scattered throughout the territory, which seems to be caused mainly by the effect of vegetation. Finally, we obtained quality categories for the territory by combining the probability values given by logistic regression with those of the environmental favourability function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Logistic regression is a statistical tool widely used for predicting species’ potential distributions starting from presence/absence data and a set of independent variables. However, logistic regression equations compute probability values based not only on the values of the predictor variables but also on the relative proportion of presences and absences in the dataset, which does not adequately describe the environmental favourability for or against species presence. A few strategies have been used to circumvent this, but they usually imply an alteration of the original data or the discarding of potentially valuable information. We propose a way to obtain from logistic regression an environmental favourability function whose results are not affected by an uneven proportion of presences and absences. We tested the method on the distribution of virtual species in an imaginary territory. The favourability models yielded similar values regardless of the variation in the presence/absence ratio. We also illustrate with the example of the Pyrenean desman’s (Galemys pyrenaicus) distribution in Spain. The favourability model yielded more realistic potential distribution maps than the logistic regression model. Favourability values can be regarded as the degree of membership of the fuzzy set of sites whose environmental conditions are favourable to the species, which enables applying the rules of fuzzy logic to distribution modelling. They also allow for direct comparisons between models for species with different presence/absence ratios in the study area. This makes themmore useful to estimate the conservation value of areas, to design ecological corridors, or to select appropriate areas for species reintroductions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bonelli’s eagle, Hieraaetus fasciatus , has recently suffered a severe population decline and is currently endangered. Spain supports about 70% of the European population. We used stepwise logistic regression on a set of environmental, spatial and human variables to model Bonelli’s eagle distribution in the 5167 UTM 10 × 10 km quadrats of peninsular Spain. We obtained a model based on 16 variables, which allowed us to identify favourable and unfavourable areas for this species in Spain, as well as intermediate favourability areas. We assessed the stepwise progression of the model by comparing the model’s predictions in each step with those of the final model, and selected a parsimonious explanatory model based on three variables — slope, July temperature and precipitation — comprising 76% of the predictive capacity of the

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solar radiation takes in today's world, an increasing importance. Different devices are used to carry out spectral and integrated measurements of solar radiation. Thus the sensors can be divided into the fallow types: Calorimetric, Thermomechanical, Thermoelectric and Photoelectric. The first three categories are based on components converting the radiation to temperature (or heat) and then into electrical quantity. On the other hand, the photoelectric sensors are based on semiconductor or optoelectronic elements that when irradiated change their impedance or generate a measurable electric signal. The response function of the sensor element depends not only on the intensity of the radiation but also on its wavelengths. The radiation sensors most widely used fit in the first categories, but thanks to the reduction in manufacturing costs and to the increased integration of electronic systems, the use of the photoelectric-type sensors became more interesting. In this work we present a study of the behavior of different optoelectronic sensor elements. It is intended to verify the static response of the elements to the incident radiation. We study the optoelectronic elements using mathematical models that best fit their response as a function of wavelength. As an input to the model, the solar radiation values are generated with a radiative transfer model. We present a modeling of the spectral response sensors of other types in order to compare the behavior of optoelectronic elements with other sensors currently in use.