4 resultados para Energy balance equations

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biophysical and meteorological variables as well as radiometric canopy temperatures were collected in an intensive orchard near Évora, Portugal, with 28% ground cover by canopy and combined in a simplified two-source energy balance model (STSEB) to independently calculate the olive tree transpiration (T_STSEB) component of the total evapotranspiration (ETc). Sap flow observations were simultaneously taken in the same orchard allowing also for independent calculations of tree transpiration (T_SF). Model water use results were compared with water use estimates from the sap flow measurements. Good agreement was observed (R2=0.86, RMSE=0.20 mm d-1), with an estimation average absolute error (AAE) of 0.17 mm d-1. From June to August, on average olive water use were 1.92 and 1.89 mm d-1 for sap flow and STSEB model respectively, and 1.38 and 1.58 mm d-1 for the month of September. Results were also used to assess the olive basal crop coefficients (Kcb). Kcb estimates of 0.33 were obtained for sap flow and STSEB model, respectively, for June to August, and of 0.44 and 0.53 for the month of September. Basal crop coefficients were lower than the suggested FAO56 average Kcb values of 0.65 for June to August, the crop mid-season growth stage, and of 0.65 for the month of September, the end-season.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Living organisms are open dissipative thermodynamic systems that rely on mechanothermo-electrochemical interactions to survive. Plant physiological processes allow plants to survive by converting solar radiation into chemical energy, and store that energy in form that can be used. Mammals catabolize food to obtain energy that is used to fuel, build and repair the cellular components. The exergy balance is a combined statement of the first and second laws of thermodynamics. It provides insight into the performance of systems. In this paper, exergy balance equations for both mammal’s and green plants are presented and analyzed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The study of lake–atmosphere interactions was the main purpose of a 2014 summer experiment at Alqueva reservoir in Portugal. Near-surface fluxes of momentum, heat and mass [water vapour (H2O) and carbon dioxide (CO2)] were obtained with the new Campbell Scientific’s IRGASON Integrated Open-Path CO2/H2O Gas Analyser and 3D Sonic Anemometer between 2 June and 2 October. On average, the reservoir was releasing energy in the form of sensible and latent heat flux during the study period. At the end of the 75 d, the total evaporation was estimated as 490.26 mm. A high correlation was found between the latent heat flux and the wind speed (R = 0.97). The temperature gradient between air and water was positive between 12 and 21 UTC, causing a negative sensible heat flux, and negative during the rest of the day, triggering a positive sensible heat flux. The reservoir acted as a sink of atmospheric CO2 with an average rate of −0.026 mg m−2 s−1. However, at a daily scale we found an unexpected uptake between 0 and 9 UTC and almost null flux between 13 and 19 UTC. Potential reasons for this result are further discussed. The net radiation was recorded for the same period and water column heat storage was estimated using water temperature profiles. The energy balance closure for the analysed period was 81%. In-water solar spectral downwelling irradiance profiles were measured with a new device allowing measurements independent of the solar zenith angle, which enabled the computation of the attenuation coefficient of light in the water column. The average attenuation coefficient for the photosynthetically active radiation spectral region varied from 0.849 ± 0.025 m−1 on 30 July to 1.459 ± 0.007 m−1 on 25 September.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

(Prefácio) This dissertation is submitted for the degree of Masters (Engenharia Informática) at University of Évora. Under the supervision of Professor Francisco Manuel Gonçalves Coelho, i have selected to work on game design. With the specific period of time and resources, an attempt has been made to make a serious educational game. While writing this thesis, the objective was to describe a math game for solving mathematical equations. Injecting learning factor in a game, is a main concern of this project. The document is about the description of ‘X in Balance’ game. This game provides a platform for school aged students to solve the equations by playing game. It also gives a unique dimension of putting fun and math in a same platform. The document describes full detail on the project. The first chapter gives an introduction about the problem faced by students in doing maths and the learning behavior of a game. It also points out the opportunities that this game might brings and the motivation behind doing this work. It describes the game concept and its genre too. Besides, the second chapter tells state of an art of serous educational game. It defines the concept of serious game and its types. Furthermore, it justifies the flexibility of serious games to adapt all learning styles. The impact of serious games on learning is also mentioned. It also includes the related work of other researchers.