2 resultados para Energy, Devolution, Planning

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We used the results of the Spanish Otter Survey of 1994–1996, a Geographic Information System and stepwise multiple logistic regression to model otter presence/absence data in the continental Spanish UTM 10 10-km squares. Geographic situation, indicators of human activity such as highways and major urban centers, and environmental variables related with productivity, water availability, altitude, and environmental energy were included in a logistic model that correctly classified about 73% of otter presences and absences. We extrapolated the model to the adjacent territory of Portugal, and increased the model’s spatial resolution by extrapolating it to 1 1-km squares in the whole Iberian Peninsula. The model turned out to be rather flexible, predicting, for instance, the species to be very restricted to the courses of rivers in some areas, and more widespread in others. This allowed us to determine areas where otter populations may be more vulnerable to habitat changes or harmful human interventions. # 2003 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increasing integration of renewable energies in the electricity grid contributes considerably to achieve the European Union goals on energy and Greenhouse Gases (GHG) emissions reduction. However, it also brings problems to grid management. Large scale energy storage can provide the means for a better integration of the renewable energy sources, for balancing supply and demand, to increase energy security, to enhance a better management of the grid and also to converge towards a low carbon economy. Geological formations have the potential to store large volumes of fluids with minimal impact to environment and society. One of the ways to ensure a large scale energy storage is to use the storage capacity in geological reservoir. In fact, there are several viable technologies for underground energy storage, as well as several types of underground reservoirs that can be considered. The geological energy storage technologies considered in this research were: Underground Gas Storage (UGS), Hydrogen Storage (HS), Compressed Air Energy Storage (CAES), Underground Pumped Hydro Storage (UPHS) and Thermal Energy Storage (TES). For these different types of underground energy storage technologies there are several types of geological reservoirs that can be suitable, namely: depleted hydrocarbon reservoirs, aquifers, salt formations and caverns, engineered rock caverns and abandoned mines. Specific site screening criteria are applicable to each of these reservoir types and technologies, which determines the viability of the reservoir itself, and of the technology for any particular site. This paper presents a review of the criteria applied in the scope of the Portuguese contribution to the EU funded project ESTMAP – Energy Storage Mapping and Planning.