3 resultados para Embedding mappin
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
In this paper, we describe one of the approaches of the participation of Universidade de Évora. Our approach is similar to usual methods where text is preprocessed, features are extracted, and then used in SVMs with cross validation. The main difference is that features used come from averages of word embeddings, specifically word2vec vectors. Using PAN 2016 dataset, we were able to achieve 44.8% and 68.2% for English age and gender classification respectively. We were also able to achieve 51.3% and 67.1% accuracy for Spanish age and gender classification. Finally, we report 71.9% accuracy for Dutch age classification.
Resumo:
Using Macaulay's correspondence we study the family of Artinian Gorenstein local algebras with fixed symmetric Hilbert function decomposition. As an application we give a new lower bound for the dimension of cactus varieties of the third Veronese embedding. We discuss the case of cubic surfaces, where interesting phenomena occur.
Resumo:
Um semigrupo numérico é um submonoide de (N, +) tal que o seu complementar em N é finito. Neste trabalho estudamos alguns invariantes de um semigrupo numérico S tais como: multiplicidade, dimensão de imersão, número de Frobenius, falhas e conjunto Apéry de S. Caracterizamos uma apresentação minimal para um semigrupo numérico S e descrevemos um método algorítmico para determinar esta apresentação. Definimos um semigrupo numérico irredutível como um semigrupo numérico que não pode ser expresso como intersecção de dois semigrupos numéricos que o contenham propriamente. A finalizar este trabalho, estudamos os semigrupos numéricos irredutíveis e obtemos a decomposição de um semigrupo numérico em irredutíveis. ABSTRACT: A numerical semigroup is a submonoid of (N, +) such that its complement of N is finite. ln this work we study some invariants of a numerical semigroup S such as: multiplicity, embedding dimension, Frobenius number, gaps and Apéry set of S. We characterize a minimal presentation of a numerical semigroup S and describe an algorithmic procedure which allows us to compute a minimal presentation of S. We define an irreducible numerical semigroup as a numerical semigroup that cannot be expressed as the intersection of two numerical semigroups properly containing it. Concluding this work, we study and characterize irreducible numerical semigroups, and describe methods for computing decompositions of a numerical semigroup into irreducible numerical semigroups.