4 resultados para Electric power production -- Water consumption.

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the self-scheduling problem of a price-taker having wind and thermal power production and assisted by a cyber-physical system for supporting management decisions in a day-ahead electric energy market. The self-scheduling is regarded as a stochastic mixed-integer linear programming problem. Uncertainties on electricity price and wind power are considered through a set of scenarios. Thermal units are modelled by start-up and variable costs, furthermore constraints are considered, such as: ramp up/down and minimum up/down time limits. The stochastic mixed-integer linear programming problem allows a decision support for strategies advantaging from an effective wind and thermal mixed bidding. A case study is presented using data from the Iberian electricity market.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a novel demand response model using a fuzzy subtractive cluster approach. The model development provides support to domestic consumer decisions on controllable loads management, considering consumers’ consumption needs and the appropriate load shape or rescheduling in order to achieve possible economic benefits. The model based on fuzzy subtractive clustering method considers clusters of domestic consumption covering an adequate consumption range. Analysis of different scenarios is presented considering available electric power and electric energy prices. Simulation results are presented and conclusions of the proposed demand response model are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the last decade of the 19th and first decades of the 20th century there was a movement of capital and engineers from the central and northern Europe to the countries of southern Europe and other continents. Large companies sought to obtain concessions and establish branches in Portugal, favouring the circulation of technical knowledge and transfer of technology for Portuguese industry. Among the various examples of the representatives of foreign companies in Portugal we find Jayme da Costa Ltd. established in 1916 in Lisbon, which was a branch of the Swedish company ASEA, as well as STAAL, ATLAS DIESEL (Sweden), Landis & GYR (Switzerland), Electro Helios, etc.. Another example is EFACEC a company founded in 1948 in Porto, that was a partnership between the Portuguese company CUF – Companhia União Fabril, and ACEC – Ateliers de Constructions Électriques de Charleroi and a small entreprise Electro-Moderna Ldª. This enterprise started the industrial production of electric motors and transformers, and later on acquired a substantial share of the national production of electrical equipment. Using Estatística das Instalações Elétricas em Portugal (Statistics on Electrical Installations in Portugal) from 1928 until 1950 we can identify the foreign enterprises acting in the Portuguese market: Siemens, B.B.C, ASEA, Oerlikon, etc. We can also establish a relationship between the development of the electric network and the growth of production and consumption of electricity in the principal urban centres. Finally we see how foreign firms were a stimulus to the creation of national enterprises, especially those of small scale, in Portugal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a novel demand response model using a fuzzy subtractive cluster approach. The model development provides support to domestic consumer decisions on controllable loads management, considering consumers’ consumption needs and the appropriate load shape or rescheduling in order to achieve possible economic benefits. The model based on fuzzy subtractive clustering method considers clusters of domestic consumption covering an adequate consumption range. Analysis of different scenarios is presented considering available electric power and electric energy prices. Simulation results are presented and conclusions of the proposed demand response model are discussed.