2 resultados para Electric network analyzers.
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
In the last decade of the 19th and first decades of the 20th century there was a movement of capital and engineers from the central and northern Europe to the countries of southern Europe and other continents. Large companies sought to obtain concessions and establish branches in Portugal, favouring the circulation of technical knowledge and transfer of technology for Portuguese industry. Among the various examples of the representatives of foreign companies in Portugal we find Jayme da Costa Ltd. established in 1916 in Lisbon, which was a branch of the Swedish company ASEA, as well as STAAL, ATLAS DIESEL (Sweden), Landis & GYR (Switzerland), Electro Helios, etc.. Another example is EFACEC a company founded in 1948 in Porto, that was a partnership between the Portuguese company CUF – Companhia União Fabril, and ACEC – Ateliers de Constructions Électriques de Charleroi and a small entreprise Electro-Moderna Ldª. This enterprise started the industrial production of electric motors and transformers, and later on acquired a substantial share of the national production of electrical equipment. Using Estatística das Instalações Elétricas em Portugal (Statistics on Electrical Installations in Portugal) from 1928 until 1950 we can identify the foreign enterprises acting in the Portuguese market: Siemens, B.B.C, ASEA, Oerlikon, etc. We can also establish a relationship between the development of the electric network and the growth of production and consumption of electricity in the principal urban centres. Finally we see how foreign firms were a stimulus to the creation of national enterprises, especially those of small scale, in Portugal.
Resumo:
An integrated mathematical model for the simulation of an offshore wind system performance is presented in this paper. The mathematical model considers an offshore variable-speed turbine in deep water equipped with a permanent magnet synchronous generator using multiple point full-power clamped three-level converter, converting the energy of a variable frequency source in injected energy into the electric network with constant frequency, through a HVDC transmission submarine cable. The mathematical model for the drive train is a concentrate two mass model which incorporates the dynamic for the blades of the wind turbine, tower and generator due to the need to emulate the effects of the wind and the floating motion. Controller strategy considered is a proportional integral one. Also, pulse width modulation using space vector modulation supplemented with sliding mode is used for trigger the transistors of the converter. Finally, a case study is presented to access the system performance.