6 resultados para Electric circuit analysis
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
This paper focuses on tests of photovoltaic systems in order to address two case studies with silicon monocrystalline and silicon polycrystalline panels, respectively. The first case is an identification of the three parameters of the single-diode equivalent circuit for modelling photovoltaic systems with conclusion about the inevitably age degradation. A comparison between experimental observed and computed I-V and V-P characteristics curves is carried out at standard test conditions. The second case is an experimental observation on a photovoltaic system connected to an electric grid in what regards the quality of the energy injected into the grid. A measuring of the harmonic content in the voltage and in the current waveforms at the terminals of the photovoltaic system is carried out in order to conclude about the conformity with the Standard EN 50160 and the IEEE 519-1992, respectively.
Electric Vehicle Battery Charger: Wireless Power Transfer System Controlled by Magnetic Core Reactor
Resumo:
This paper presents a control process and frequency adjustment based on the magnetic core reactor for electric vehicle battery charger. Since few decades ago, there have been significant developments in technologies used in wireless power transfer systems, namely in battery charger. In the wireless power transfer systems is essential that the frequency of the primary circuit be equal to the frequency of the secondary circuit so there is the maximum energy transfer. The magnetic core reactor allows controlling the frequencies on both sides of the transmission and reception circuits. Also, the assembly diagrams and test results are presented.
Resumo:
This paper presents a methodology to forecast the hourly and daily consumption in households. The methodology was validated for households in Lisbon region, Portugal. The paper shows that the forecast tool allows obtaining satisfactory results for forecasting. Models of demand response allow the support of consumer’s decision in exchange for an economic benefit by the redefinition of load profile or changing the appliance consumption period. It is also in the interest of electric utilities to take advantage of these changes, particularly when consumers have an action on the demand-side management or production. Producers need to understand the load profile of households that are connected to a smart grid, to promote a better use of energy, as well as optimize the use of micro-generation from renewable sources, not only to delivering to the network but also in self-consumption.
Resumo:
This paper compares the performance of the complex nonlinear least squares algorithm implemented in the LEVM/LEVMW software with the performance of a genetic algorithm in the characterization of an electrical impedance of known topology. The effect of the number of measured frequency points and of measurement uncertainty on the estimation of circuit parameters is presented. The analysis is performed on the equivalent circuit impedance of a humidity sensor.
Resumo:
The paper states an introduction, description and implementation of a PV cell under the variation of parameters. Analysis and observation of a different parameters variation of a PV cell are discussed here. To obtain the model for the purpose of analyzing an equivalent circuit with the consisting parameters a photo current source, a series resistor, a shunt resistor and a diode is used. The fundamental equation of PV cell is used to study the model and to analyze and best fit observation data. The model can be used in measuring and understanding the behaviour of photovoltaic cells for certain changes in PV cell parameters. A numerical method is used to analyze the parameters sensitivity of the model to achieve the expected result and to understand the deviation of changes in different parameters situation at various conditions respectively. The ideal parameters are used to study the models behaviour. It is also compared the behaviour of current-voltage and power-voltage by comparing with produced maximum power point though it is a challenge to optimize the output with real time simulation. The whole working process is also discussed and an experimental work is also done to get the closure and insight about the produced model and to decide upon the validity of the discussed model.
Resumo:
In this paper it is proposed to obtain enhanced and more efficient parameters model from generalized five parameters (single diode) model of PV cells. The paper also introduces, describes and implements a seven parameter model for photovoltaic cell (PV cell) which includes two internal parameters and five external parameters. To obtain the model the mathematical equations and an equivalent circuit consisting of a photo generated current source, a series resistor, a shunt resistor and a diode is used. The fundamental equation of PV cell is used to analyse and best fit the observation data. Especially bisection iteration method is used to obtain the expected result and to understand the deviation of changes in different parameters situation at various conditions respectively. The produced model can be used of measuring and understanding the actions of photovoltaic cells for certain changes and parameters extraction. The effect is also studied with I-V and P-V characteristics of PV cells though it is a challenge to optimize the output with real time simulation. The working procedure is also discussed and an experiment presented to get the closure and insight about the produced model and to decide upon the model validity. At the end, we observed that the result of the simulation is very close to the produced model.