3 resultados para Early Warning and Nowcasting Approaches for Water Quality in Riverine and Coastal Systems
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
In Alentejo region, southern Portugal, differences in groundwater samples from six groundwater bodies covered with different land uses were analysed based on the monitoring plan of the Alqueva multi-purpose project, created in the sequence of the construction of the Alqueva Dam on the Guadiana River, in South Portugal. For most of the groundwater bodies there is a statistical significant difference between magnesium, sulphate, chloride, and phosphate. All of these ions are strongly correlated with land use management. Groundwater, where land is covered by olive groves, has high levels of electric conductivity, calcium, potassium, sulphate, and phosphate. Dry land crops are correlated with calcium, magnesium, chloride and consequently, electric conductivity, phosphates and sulphate. Vineyards are strongly correlated with high sulphate and phosphate levels. This study clearly shows that different land uses within a certain groundwater body influence the water quality in a different way. Therefore, an appropriate soil management should be adjusted to each situation, taking into account the aquifer matrix and the overlying soil.
Resumo:
Vitis vinifera L. cv. Crimson Seedless is a late season red table grape developed in 1989, with a high market value and increasingly cultivated under protected environments to extend the availability of seedless table grapes into the late fall. The purpose of this work was to evaluate leaf water potential and sap flow as indicators of water stress in Crimson Seedless vines under standard and reduced irrigation strategy, consisting of 70 % of the standard irrigation depth. Additionally, two sub-treatments were applied, consisting of normal irrigation throughout the growing season and a short irrigation induced stress period between veraison and harvest. Leaf water potential measurements coherently signaled crop-available water variations caused by different irrigation treatments, suggesting that this plant-based method can be reliably used to identify water-stress conditions. The use of sap flow density data to establish a ratio based on a reference ‘well irrigated vine’ and less irrigated vines can potentially be used to signal differences in the transpiration rates, which may be suitable for improving irrigation management strategies while preventing undesirable levels of water stress. Although all four irrigation strategies resulted in the production of quality table grapes, significant differences (p ≤ 0.05) were found in both berry weight and sugar content between the standard irrigation and reduced irrigation treatments. Reduced irrigation increased slightly the average berry size as well as sugar content and technical maturity index. The 2-week irrigation stress period had a negative effect on these parameters.
Resumo:
Abstract Vitis vinifera L. cv. Crimson Seedless is a late season red table grape developed in 1989, with a high market value and increasingly cultivated under protected environments to extend the availability of seedless table grapes into the late fall. The purpose of this work was to evaluate leaf water potential and sap flow as indicators of water stress in Crimson Seedless vines under standard and reduced irrigation strategy, consisting of 70 % of the standard irrigation depth. Additionally, two sub-treatments were applied, consisting of normal irrigation throughout the growing season and a short irrigation induced stress period between veraison and harvest. Leaf water potential measurements coherently signaled crop-available water variations caused by different irrigation treatments, suggesting that this plant-based method can be reliably used to identify water-stress conditions. The use of sap flow density data to establish a ratio based on a reference ‘well irrigated vine’ and less irrigated vines can potentially be used to signal differences in the transpiration rates, which may be suitable for improving irrigation management strategies while preventing undesirable levels of water stress. Although all four irrigation strategies resulted in the production of quality table grapes, significant differences (p ≤ 0.05) were found in both berry weight and sugar content between the standard irrigation and reduced irrigation treatments. Reduced irrigation increased slightly the average berry size as well as sugar content and technical maturity index. The 2-week irrigation stress period had a negative effect on these parameters.