1 resultado para Discrete lattices
em Repositório Científico da Universidade de Évora - Portugal
Filtro por publicador
- Aberdeen University (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (6)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (12)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (12)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (20)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (14)
- CaltechTHESIS (7)
- Cambridge University Engineering Department Publications Database (124)
- CentAUR: Central Archive University of Reading - UK (33)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (34)
- Cochin University of Science & Technology (CUSAT), India (17)
- Coffee Science - Universidade Federal de Lavras (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (4)
- Digital Peer Publishing (3)
- DigitalCommons@The Texas Medical Center (2)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Diposit Digital de la UB - Universidade de Barcelona (3)
- Duke University (2)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (3)
- Indian Institute of Science - Bangalore - Índia (70)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico de Bragança (2)
- Instituto Politécnico do Porto, Portugal (5)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (9)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Publishing Network for Geoscientific & Environmental Data (147)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (130)
- Queensland University of Technology - ePrints Archive (51)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (5)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (94)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (5)
- Universidad Politécnica de Madrid (23)
- Universidade Complutense de Madrid (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitat de Girona, Spain (4)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (7)
- Université de Montréal, Canada (6)
- University of Michigan (10)
- University of Queensland eSpace - Australia (37)
- University of Southampton, United Kingdom (1)
- University of Washington (1)
- WestminsterResearch - UK (2)
Resumo:
We show that a self-generated set of combinatorial games, S, may not be hereditarily closed but, strong self-generation and hereditary closure are equivalent in the universe of short games. In [13], the question “Is there a set which will give an on-distributive but modular lattice?” appears. A useful necessary condition for the existence of a finite non-distributive modular L(S) is proved. We show the existence of S such that L(S) is modular and not distributive, exhibiting the first known example. More, we prove a Representation Theorem with Games that allows the generation of all finite lattices in game context. Finally, a computational tool for drawing lattices of games is presented.