2 resultados para Desert View Mine

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

30.00% 30.00%

Publicador:

Resumo:

After the Congress, a six-day field trip, will be held through three southwestern provinces of Angola (Huíla, Namibe and Cunene), every day starting and ending in the city of Lubango, for overnight stay in Lubango, with the purpose to observe some of the main sites of geological interest in this zone of Angola. The itinerary of this field trip presents the geologic history of Southwestern Angola and its evolution in the scope of the Congo Craton, through a trip that begins in the first excursion days by the oldest geologic formations and phenomena until the recent geologic formations and phenomena on the last excursion days. On the first and second excursion days, September 5th and September 6th, the field trip will go along the Kunene Anorthosite Complex of Angola (KAC), to observe some petrographic features of the KAC that are important to understand the emplacement of this huge igneous massif of the early Kibarean age. These days of the field trip allow the observation of Earthen Construction, because this region of Cunene is privileged to appreciate a kind of Eco-construction, made of raw earth and in wattle and daub, built with ancient techniques, which constitute a real GeoHeritage. On September 7th, in the morning, the destination will be Tundavala, to visit Tundavala Gap, a huge escarpment of more than 1,000 m high cutted in Neo-Archean and Paleo-Proterozoic igneous rocks, the Ruins of Tundavala (quartzite blocks with sedimentary structures) and Tundavala Waterfalls on a quartzitic scarp. After lunch, the field trip continues towards Humpata plateau to observe the panoramic view over Lubango city from the Statue of Cristo Rei, then the outcrops of dolomitic limestones with stromatolites and dolerites and finally the Leba passage, a huge escarpment and one of the most spectacular parts of the Serra da Chela, traversed by a mountain road built in the early 70s of the last century, that can be observed from the belvedere of the Serra da Chela. On September 8th, the destination is the carbonatite complexes of Tchivira and Bonga, belonging to the Mesozoic alkaline massifs of ultrabasic rocks, a rift valley system that occurs during the Early Cretaceous. In this forth excursion day, due to the huge dimensions of these two carbonatite structures it will be visited, only, the Complex of Bonga, namely the outcrops of the northern part of the structure and secondary deposits on the boundary on the southern part of the of the Complex. The last two excursion days, September 9th and September 10th, are to observe the Cretaceous Basin of Namibe. On September 9th, the northern part of Namibe Basin will be visited to observe the volcanic basic rocks of Namibe as well as the interesting paleontological site of Bentiaba. On September 10th, the destination is the southern and more recent part of Namibe Basin, where on the Namib Desert, the exotic plant Welwitschia mirabilis can be observed, as well as Arco, an oasis in the desert. This last excursion day, ends up at the dunes of Tombwa near the mouth of Curoca river and the beautiful bay of Tombwa, where can be observed heavy minerals in their beach sands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The first report of the disease (“pine wilt disease”) associated with the pinewood nematode, goes back to 1905, when Yano reported an unusual decline of pines from Nagasaki. For a long time thereafter, the cause of he disease was sought, but without success. Because of the large number of insect species that were usually seen around and on infected trees, it had always been assumed that the causal agent would prove to be one of these. However, in 1971, Kiyohara and Tokushike found a nematode of the genus Bursaphelenchus in infected trees. The nematode found was multiplied on fungal culture, inoculated into healthy trees and then re-isolated from the resulting wilted trees. The subsequent published reports were impressive: this Bursaphelenchus species could kill fully-grown trees within a few months in the warmer areas of Japan, and could destroy complete forests of susceptible pine species within a few years. Pinus densiflora, P. thunbergii und P. luchuensis were particularly affected. In 1972, Mamiya and Kiyohara described the new species of nematode extracted from the wood of diseased pines; it was a named Bursaphelenchus lignicolus. Since 1975, the species has spread to the north of Japan, with the exception of the most northerly prefectures. In 1977, the loss of wood in the west of the country reached 80%. Probably as a result of unusually high summer temperatures and reduced rainfall in the years 1978 and 1979, the losses were more than 2 million m3 per year. From the beginning, B. lignicolus was always considered by Japanese scientists to be an exotic pest. But where did it come from? That this nematode could also cause damage in the USA became clear in 1979 when B. lignicolus was isolated in great numbers from wood of a 39 year-old pine tree (Pinus nigra) in Missouri which had suddenly died after the colour of its needles changed to a reddish-brown colour (Dropkin und Foudin, 2 1979). In 1981, B. lignicolus was synonymised by Nickle et al. with B. xylophilus which had been found for the first time in the USA as far back as 1929, and reported by Steiner and Buhrer in 1934. It had originally been named Aphelenchoides xylophilus, the wood-inhabiting Aphelenchoides but was recognised by Nickle, in 1970,to belong in the genus Bursaphelenchus. Its common name in the USA was the "pine wood nematode" (PWN. After its detection in Missouri, it became known that B. xylophilus was widespread throughout the USA and Canada. It occurred there on native species of conifers where, as a rule, it did not show the symptoms of pine wilt disease unless susceptible species were stressed eg., by high temperature. This fact was an illuminating piece of evidence that North America could be the homeland of PWN. Dwinell (1993) later reported the presence of B. xylophilus in Mexico. The main vector of the PWN in Japan was shown to be the long-horned beetle Monochamus alternatus, belonging to the family Cerambycidae. This beetle lays its eggs in dead or dying trees where the developing larvae then feed in the cambium layer. It was already known in Japan in the 19th century but in the 1930s, it was said to be present in most areas of Japan, but was generally uncommon. However, with the spread of the pine wilt disease, and the resulting increase of weakened trees that could act as breeding sites for beetles, the populations of Monochamus spp. increased significantly In North America, other Monochamus species transmit PWN, and the main vector is M. carolinensis. In Japan, there are also other, less efficient vectors in the genus Monochamus. Possibly, all Monochamus species that breed in conifers can transmit the PWN. The occasional transmission by less efficient species of Monochamus or by some of the many other beetle genera in the bark or wood is of little significance. In Europe, M. galloprovincialis and M. sutor transmits the closely related species B. mucronatus. Some speculate that these two insect species are “standing by” and waiting for the arrival of B. xylophilus. In 1982, the nematode was detected and China. It was first found in dead pines near the Zhongshan Monument of Nanjing (CHENG et. al. 1983); 265 trees were then killed by pine wilt disease. Despite great efforts at eradication in China, the nematode spread further and pine wilt disease has been 3 reported from parts of the provinces of Jiangsu, Anhui, Guangdong, Shandong, Zhejiang and Hubei (YANG, 2003). In 1986, the spread of the PWN to Taiwan was discovered and in 1989, the nematode was reported to be present in the Republic of Korea where it had first been detected in Pinus thunbergii and P. densiflora. It was though to have been introduced with packing material from Japan. PWN was advancing. In 1984, B. xylophilus was found in wood chips imported into Finland from the USA and Canada, and this was the impetus to establish phytosanitary measures to prevent any possible spread into Europe. Finland prohibited the import of coniferous wood chips from these sources, and the other Nordic countries soon followed suit. EPPO (the European and Mediterranean Plant Protection Organization) made a recommendation to its member countries in 1986 to refuse wood imports from infested countries. With its Directive of 1989 (77/93 EEC), the European Community (later called the European Union or EU) recognised the potential danger of B. xylophilus for European forests and imposed restrictions on imports into the Europe. PWN was placed on the quarantine list of the EU and also of other European countries. Later, in 1991, a dispensation was allowed by the Commission of the EU(92/13 EEC) for coniferous wood from North America provided that certain specified requirements were fulfilled that would prevent introduction.