4 resultados para Descarga sólida fluvial
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
This study examines the long profiles of tributaries of the Tejo (Tagus) and Zêzere rivers in central eastern Portugal (West Iberia) in order to provide new insights into the patterns, timing and controls on drainage development during the Pleistocene to Holocene incision stage. The long profiles were extracted from lower order tributary streams associated with the trunk drainage of the Tejo River and one main tributary, the Zêzere River (Fig. 1). These streams flow through a landscape strongly influenced by variations in bedrock lithology (mainly granites and metasediments), fault structures delimiting crustal blocks with distinct uplift rates, and a base-level lowering history (tectonic uplift / eustatic). The long profiles of the tributaries of the Tejo and Zêzere rivers record a series of transient and permanent knickpoints. The permanent knickpoints have direct correlation with the bedrock strength, corresponding to the outcropping of very hard quartzites or to the transition from softer (slates/metagreywaques) to harder (granite) basement. The analyzed streams/rivers record also an older transient knickpoint/knickzone separating: a) an upstream relict graded profile, with lower steepness and higher concavity, that reflects a long period of quasi-equilibrium conditions reached after the beginning of the incision stage; and b) a downstream reach displaying a rejuvenated long profile, with steeper gradient and lower concavity, particularly for the final segment, which is often convex (Fig. 2). The rejuvenated reaches testify the upstream propagation of several incision waves that are the response of each stream to continuous or increasing crustal uplift and dominant periods of base-level lowering by the trunk drainages, coeval of low sea level conditions. The long profiles and their morphological configurations enabled spatial and relative temporal patterns of incision to be quantified for each individual tributary stream. The incision values of streams flowing in uplifted blocks of the Portuguese Central Range (PCR) (ca.380-280 m) indicate differential uplift and are higher than the incision values of streams flowing on the adjacent South Portugal planation surface – the Meseta (ca. 200 m). The normalized steepness index, calculated using the method of Wobus et al. (2006), proved to be sensitive to active tectonics, as lower ksn values were found in relict graded profiles of streams located in less uplifted blocks, (e.g. Sertã stream in the PCR), or in those flowing through tectonic depressions. Fig. 1 – Geological map of the study area. 1 – fluvial terraces (Pleistocene); 2 – sedimentary cover (Paleogene and Neogene); 3 – slates and metasandstones (Devonian); 4 – slates and quartzites (Silurian); 5 – quartzites (Ordovician); 6 – slates and metagreywackes (Precambrian to Cambrian); 7 – slates, metagreywackes and limestones (Precambrian); 8 – granites and ortogneisses; 9 – diorites and gabros; 10 - fault. SFf – Sobreira Formosa fault; Sf – Sertã fault; Pf – Ponsul fault; Gf – Grade fault. The differential uplift indicated by the distribution of the ksn values and by the fluvial incision was likely accumulated on a few major faults, as the Sobreira Formosa fault (SFf), thus corroborating the tectonic activity of these faults. Due to the fact that the relict graded profiles can be correlated with other geomorphic references documented in the study area, namely the T1 terrace of the Tagus River (with an age of ca. 1 Myr), the following incision rates can be estimated: a) for the studied streams located in uplifted blocks of the PCR, 0.38 m/kyr to 0.28 m/kyr; b) for the streams flowing on the South Portugal planation surface, 0.20 m/kyr. The differential uplift inferred between crustal blocks in the study area corroborates the neotectonic activity of the bordering faults, which has been proposed in previous studies based upon less robust data. Fig. 2 – Longitudinal profile of the Nisa stream a tributary of the Tejo River. Note the equilibrium relict profile upstream the older transient knickpoint (hatched line) and the downstream rejuvenated profile (continuous line). Legend: tKP – transient knickpoint; rKp – resistant knickpoint; Mt – schist and phyllite; Gr – granite; Hf – hornfels; Og – orthogneisse. In the inset Distance – Slope plots, fill circles correspond to the relict graded profile, crosses correspond to the rejuvenated profile located downstream the older transient knickpoint (tKP).
Resumo:
NEW DATA ON THE CHRONOLOGY OF THE VALE DO FORNO SEDIMENTARY SEQUENCE (LOWER TAGUS RIVER TERRACE STAIRCASE) AND ITS RELEVANCE AS FLUVIAL ARCHIVE OF THE MIDDLE PLEISTOCENE IN WESTERN IBERIA Pedro P. Cunha 1, António A. Martins 2, Jan-Pieter Buylaert 3,4, Andrew S. Murray 4, Luis Raposo 5, Paolo Mozzi 6, Martin Stokes 7 1 MARE - Marine and Environmental Sciences Centre, Department of Earth Sciences, University of Coimbra, Portugal: pcunha@dct.uc.pt 2 MARE - Marine and Environmental Sciences Centre, Dep. Geociências, University of Évora, Portugal; aam@uevora.pt 3 Centre for Nuclear Technologies, Technical University of Denmark, Risø Campus, Denmark; jabu@dtu.dk 4 Nordic Laboratory for Luminescence Dating, Aarhus University, Risø DTU, Denmark; anmu@dtu.dk 5 Museu Nacional de Arqueologia, Lisboa, Portugal; 3raposos@sapo.pt 6 Department of Geosciences, University of Padova, Italy; paolo.mozzi@unipd.it 7 School of Geography, Earth and Environmental Sciences, University of Plymouth, UK; m.stokes@plymouth.ac.uk The stratigraphic units that record the evolution of the Tagus River in Portugal (study area between Vila Velha de Ródão and Porto Alto villages; Fig. 1) have different sedimentary characteristics and lithic industries (Cunha et al., 2012): - a culminant sedimentary unit (the ancestral Tagus, before the drainage network entrenchment) – SLD13 (+142 to 262 m above river bed – a.r.b.; with probable age ca. 3,6 to 1,8 Ma), without artefacts; - T1 terrace (+84 to 180 m; ca. 1000? to 900 ka), without artefacts; - T2 terrace (+57 to 150 m; top deposits with a probable age ca. 600 ka), without artefacts; - T3 terrace (+43 to 113 m; ca. 460 to 360? ka), without artefacts; - T4 terrace (+26 to 55 m; ca. 335 a 155 ka), Lower Paleolithic (Acheulian) at basal and middle levels but early Middle Paleolithic at top levels; - T5 terrace (+5 to 34 m; 135 to 73 ka), Middle Paleolithic (Mousterian; Levallois technique); - T6 terrace (+3 to 14 m; 62 to 32 ka), late Middle Paleolithic (late Mousterian); - Carregueira Sands (aeolian sands) and colluvium (+3 a ca. 100 m; 32 to 12 ka), Upper Paleolithic to Epipaleolithic; - alluvial plain (+0 to 8 m; ca. 12 ka to present), Mesolithic and more recent industries. The differences in elevation (a.r.b.) of the several terrace staircases results from differential uplift due to active faults. Longitudinal correlation with the terrace levels indicates that a graded profile ca. 200 km long was achieved during terrace formation periods and a strong control by sea base level was determinant for terrace formation. The Neogene sedimentary units constituted the main source of sediments for the fluvial terraces (Fig. 2). Geomorphological mapping, coupled with lithostratigraphy, sedimentology and luminescence dating (quartz-OSL and K-feldspar post-IRIR290) were used in this study focused on the T4 terrace, which comprises a Lower Gravels (LG) unit and an Upper Sand (US) unit. The thick, coarse and dominantly massive gravels of the LG unit indicate deposition by a coarse bed-load braided river, with strong sediment supply, high gradient and fluvial competence, during conditions of rapidly rising sea level. Luminescence dating only provided minimum ages but it is probable that the LG unit corresponds to the earlier part of the MIS9 (ca. 335 to 325 ka), immediately postdating the incision promoted by the very low sea level (reaching ca. -140 m) during MIS10 (362 to 337 ka), a period of relatively cold climate conditions with weak vegetation cover on slopes and low sea level. Fig. 1. Main Portuguese reaches in which the Tagus River can be divided (Lower Tagus Basin): I – from the Spanish border to Arneiro (a general E–W trend, mainly consisting of polygonal segments); II – from Arneiro to Gavião (NE–SW); III – from Gavião to Arripiado (E–W); IV – from Arripiado to Vila Franca de Xira (NNE-SSW); V – from Vila Franca de Xira to the Atlantic shoreline. The faults considered to be the limit of the referred fluvial sectors are: F1 – Ponsul-Arneiro fault (WSW-ENE); F2 – Gavião fault (NW-SE); F3 – Ortiga fault (NW-SE); F4 – Vila Nova da Barquinha fault (W-E); F5 – Arripiado-Chamusca fault (NNE-SSW). 1 – estuary; 2 – terraces; 3 – faults; 4 – Tagus main channel. The main Iberian drainage basins are also represented (inset). The lower and middle parts of the US unit, comprising an alternation of clayish silts with paleosols and minor sands to the east (flood-plain deposits) and sand deposits to the west (channel belt), have a probable age of ca. 325 to 200 ka. This points to formation during MIS9 to MIS7, under conditions of high to medium sea levels and warm to mild conditions. The upper part of the US unit, dominated by sand facies and with OSL ages of ca. 200 to 154 ka, correlates with the early part of the MIS6. During this period, progradation resulted from climate deterioration and relative depletion of vegetation that promoted enhanced sediment production in the catchment, coupled with initiation of sea-level lowering that increased the longitudinal slope. The Vale do Forno and Vale da Atela archaeological sites (Alpiarça, central Portugal) document the earliest human occupation in the Lower Tagus River, well established in geomorphological and environmental terms, within the Middle Pleistocene. The Lower Palaeolithic sites were found on the T4 terrace (+26 m, a.r.b.). The oldest artefacts previously found in the LG unit, display crude bifacial forms that can be attributed to the Acheulian, with a probable age of ca. 335 to 325 ka. The T4 US unit has archaeological sites stratigraphically documenting successive phases of an evolved Acheulian, that probably date ca. 325 to 300 ka. Notably, these Lower Palaeolithic artisans were able to produce tools with different sophistication levels, simply by applying different strategies: more elaborated reduction sequences in case of bifaces and simple reduction sequences to obtain cleavers. Fig. 2. . Simplified geologic map of the Lower Tagus Cenozoic basin, adapted from the Carta Geológica de Portugal, 1/500000, 1992). The study area (comprising the Vale do Forno and Vale de Atela sites) is located on the more upstream sector of the Lower Tagus River reach IV, between Arripiado and Chamusca villages. 1 – alluvium (Holocene); 2 – terraces (Pleistocene); 3 – sands, silts and gravels (Paleogene to Pliocene); 4 – Sintra Massif (Cretaceous); 5 – limestones, marls, silts and sandstones (Mesozoic); 6 – quartzites (Ordovician); 7 – basement (Proterozoic to Palaeozoic); 8 – main fault. The main Portuguese reaches of the Tagus River are identified (I to V). The VF3 site (Milharós), containing a Final Acheulian industry, with fine and elaborated bifaces) found in a stratigraphic level located between the T4 terrace deposits and a colluvium associated with Late Pleistocene aeolian sands (32 to 12 ka), has an age younger than ca. 154 ka but much older than 32 ka. In the study area, the sedimentary units of the T4 terrace seem to record the river response to sea-level changes and climatically-driven fluctuations in sediment supply. REFERENCES Cunha P. P., Almeida N. A. C., Aubry T., Martins A. A., Murray A. S., Buylaert J.-P., Sohbati R., Raposo L., Rocha L., 2012, Records of human occupation from Pleistocene river terrace and aeolian sediments in the Arneiro depression (Lower Tejo River, central eastern Portugal). Geomorphology, vol. 165-166, pp. 78-90.
Resumo:
This study examines the long profiles of tributaries of the Tagus and Zêzere rivers in Portugal (West Iberia) in order to provide new insights into patterns, timing, and controls on drainage development during the Quaternary incision stage. The studied streams are incised into a relict culminant fluvial surface, abandoned at the beginning of the incision stage. The streams flow through a landscape with bedrock variations in lithology (mainly granites and metasediments) and faulted blocks with distinct uplift rates. The long profiles of the analyzed streams record an older transitory knickpoint/knickzone separating (1) an upstream relict graded profile, with lower steepness and higher concavity, that reflects a long period of quasi-equilibrium conditions reached after the beginning of the incision stage, and (2) a downstream rejuvenated long profile, with steeper gradient and lower concavity, particularly for the final reach, which is often convex. The rejuvenated reaches testify to the upstream propagation of several incision waves, interpreted as the response of each stream to increasing crustal uplift and prolonged periods of base-level lowering by the trunk drainages, coeval with low sea level conditions. The morphological configurations of the long profiles enabled spatial and relative temporal patterns of incisions to be quantified. The incision values of streams flowing on the Portuguese Central Range (PCR; ca. 380–150 m) are variable but generally higher than the incision values of streams flowing on the adjacent South Portugal Planation Surface (SPPS; ca. 220–110 m), corroborating differential uplift of the PCR relative to the SPPS. Owing to the fact that the relict graded profiles can be correlated with the Tagus River T1 terrace (1.1–0.9 My) present in the study area, incision rates can be estimated (1) for the streams located in the PCR, 0.38–0.15 m/ky and (2) for the streams flowing on the SPPS, 0.22–0.12 m/ky. The differential uplift inferred in the study area supports the neotectonic activity of the bordering faults, as proposed in previous studies based upon other geological evidence.
Resumo:
This study examines the long profiles of tributaries of the Tagus and Zêzere rivers in Portugal (West Iberia) in order to provide new insights into patterns, timing, and controls on drainage development during the Quaternary incision stage. The studied streams are incised into a relict culminant fluvial surface, abandoned at the beginning of the incision stage. The streams flow through a landscape with bedrock variations in lithology (mainly granites and metasediments) and faulted blocks with distinct uplift rates. The long profiles of the analyzed streams record an older transitory knickpoint/knickzone separating (1) an upstream relict graded profile, with lower steepness and higher concavity, that reflects a long period of quasi-equilibrium conditions reached after the beginning of the incision stage, and (2) a downstream rejuvenated long profile, with steeper gradient and lower concavity, particularly for the final reach, which is often convex. The rejuvenated reaches testify to the upstream propagation of several incision waves, interpreted as the response of each stream to increasing crustal uplift and prolonged periods of base-level lowering by the trunk drainages, coeval with low sea level conditions. The morphological configurations of the long profiles enabled spatial and relative temporal patterns of incisions to be quantified. The incision values of streams flowing on the Portuguese Central Range (PCR; ca. 380–150 m) are variable but generally higher than the incision values of streams flowing on the adjacent South Portugal Planation Surface (SPPS; ca. 220–110 m), corroborating differential uplift of the PCR relative to the SPPS. Owing to the fact that the relict graded profiles can be correlated with the Tagus River T1 terrace (1.1–0.9 My) present in the study area, incision rates can be estimated (1) for the streams located in the PCR, 0.38–0.15 m/ky and (2) for the streams flowing on the SPPS, 0.22–0.12 m/ky. The differential uplift inferred in the study area supports the neotectonic activity of the bordering faults, as proposed in previous studies based upon other geological evidence.