1 resultado para Data-driven modelling
em Repositório Científico da Universidade de Évora - Portugal
Filtro por publicador
- JISC Information Environment Repository (1)
- Aberdeen University (4)
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (3)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (7)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (6)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (1)
- Aston University Research Archive (31)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (2)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (33)
- Brock University, Canada (4)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (4)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (34)
- CentAUR: Central Archive University of Reading - UK (74)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (4)
- Cochin University of Science & Technology (CUSAT), India (5)
- Collection Of Biostatistics Research Archive (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- CUNY Academic Works (15)
- Dalarna University College Electronic Archive (4)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons - Michigan Tech (4)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (14)
- Digital Repository at Iowa State University (1)
- DigitalCommons@The Texas Medical Center (5)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (4)
- Duke University (4)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (35)
- FUNDAJ - Fundação Joaquim Nabuco (3)
- Glasgow Theses Service (4)
- Greenwich Academic Literature Archive - UK (5)
- Helda - Digital Repository of University of Helsinki (13)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (5)
- Indian Institute of Science - Bangalore - Índia (16)
- Instituto Politécnico de Viseu (2)
- Instituto Politécnico do Porto, Portugal (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (2)
- Memorial University Research Repository (2)
- Ministerio de Cultura, Spain (1)
- Nottingham eTheses (3)
- Open University Netherlands (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (10)
- Portal de Revistas Científicas Complutenses - Espanha (2)
- Publishing Network for Geoscientific & Environmental Data (11)
- QSpace: Queen's University - Canada (3)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (41)
- Queensland University of Technology - ePrints Archive (315)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (4)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositorio Institucional de la Universidad de Málaga (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (5)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (4)
- Universidad de Alicante (8)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (20)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universidade Técnica de Lisboa (1)
- Universita di Parma (1)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (1)
- Université de Montréal (2)
- Université de Montréal, Canada (9)
- Université Laval Mémoires et thèses électroniques (1)
- University of Michigan (3)
- University of Queensland eSpace - Australia (17)
- University of Southampton, United Kingdom (3)
- University of Washington (4)
- WestminsterResearch - UK (3)
Resumo:
This paper proposes a process for the classifi cation of new residential electricity customers. The current state of the art is extended by using a combination of smart metering and survey data and by using model-based feature selection for the classifi cation task. Firstly, the normalized representative consumption profi les of the population are derived through the clustering of data from households. Secondly, new customers are classifi ed using survey data and a limited amount of smart metering data. Thirdly, regression analysis and model-based feature selection results explain the importance of the variables and which are the drivers of diff erent consumption profi les, enabling the extraction of appropriate models. The results of a case study show that the use of survey data signi ficantly increases accuracy of the classifi cation task (up to 20%). Considering four consumption groups, more than half of the customers are correctly classifi ed with only one week of metering data, with more weeks the accuracy is signifi cantly improved. The use of model-based feature selection resulted in the use of a signifi cantly lower number of features allowing an easy interpretation of the derived models.