2 resultados para Crayfish Digestive organs
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
Fleas, several aeroallergens as well as many food allergens are the most common allergenic sources for animals and frequent cause of allergic reactions with different target organs such as skin, eyes, and respiratory or digestive systems. Allergy diagnosis needs to follow well-established guidelines under clinical and laboratory approaches. Since 1980 with the Hanifin & Rajka’s criteria for the diagnosis of atopic dermatitis (AD) in humans, successive proposals have been developed to identify atopic dermatitis in dogs. A consensual plan was first proposed by Willemse in 1986 undergoing several modifications in 1994. Prélaud and colleagues made important changes to the plan in 1998 and it was further adjusted by Favrot in 2009. In 2010, this plan was approved by the International Task Force on Canine Atopic Dermatitis (CAD). It was subjected in 2015 to minor updates with regard to therapeutic options. To improve diagnostic accuracy by integrating the basic knowledge on sensitization development and allergen nature and diversity, allergen sources and implicated molecular allergens for animals should be clearly identified. As well as in human medicine, this molecular epidemiology concept is essential for the veterinary allergy diagnosis in the near future, standing as the basis of a component-resolved diagnosis (CRD). Besides current pharma- cotherapy, it will be highly relevant to increase the efficiency of the avoidance measures and specific immunotherapy. Clinical guidelines will lead to at least 80 % of positive diagnosis of atopy, but newer laboratory methods in veterinary medicine aiming to a more precise diagnosis and a better integration of the clinical/laboratory diagnostic course are needed. Allergoms identification for animals, from different allergen sources proteoms should become a priority in veterinary allergology, in order to allow the intended CRD, which is essential to understand the cross-reaction phenomena, allowing a more precise and possibly effective component-resolved immunotherapy (CRIT). Further research has been carried out for a better understanding of the interaction between allergic clinical condition and immune pathophysiology. As well as in human medicine, a deeper knowledge of the molecular immunological mechanisms in veterinary allergy — with their specific allergen triggers — will also provide the veterinary allergist with the necessary information to act more efficiently in the future.
Resumo:
Procambarus clarkii is currently recorded from 16 European territories. On top of being a vector of crayfish plague, which is responsible for large-scale disappearance of native crayfish species, it causes severe impacts on diverse aquatic ecosystems, due to its rapid life cycle, dispersal capacities, burrowing activities and high population densities. The species has even been recently discovered in caves. This invasive crayfish is a polytrophic keystone species that can exert multiple pressures on ecosystems. Most studies deal with the decline of macrophytes and predation on several species (amphibians, molluscs, and macroinvertebrates), highlighting how this biodiversity loss leads to unbalanced food chains. At a management level, the species is considered as (a) a devastating digger of the water drainage systems in southern and central Europe, (b) an agricultural pest in Mediterranean territories, consuming, for example, young rice plants, and (c) a threat to the restoration of water bodies in north-western Europe. Indeed, among the high-risk species, P. clarkii consistently attained the highest risk rating. Its negative impacts on ecosystem services were evaluated. These may include the loss of provisioning services such as reductions in valued edible native species of regulatory and supporting services, inducing wide changes in ecological communities and increased costs to agriculture and water management. Finally, cultural services may be lost. The species fulfils the criteria of the Article 4(3) of Regulation (EU) No 1143/2014 of the European Parliament (species widely spread in Europe and impossible to eradicate in a cost-effective manner) and has been included in the “Union List”. Particularly, awareness of the ornamental trade through the internet must be reinforced within the European Community and import and trade regulations should be imposed to reduce the availability of this high-risk species.