3 resultados para Compressed workweek.

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of renewable energies as a response to the EU targets defined for 2030 Climate Change and Energy has been increasing. Also non-dispatchable and intermittent renewable energies like wind and solar cannot generally match supply and demand, which can also cause some problems in the grid. So, the increased interest in energy storage has evolved and there is nowadays an urgent need for larger energy storage capacity. Compressed Air Energy Storage (CAES) is a proven technology for storing large quantities of electrical energy in the form of high-pressure air for later use when electricity is needed. It exists since the 1970’s and is one of the few energy storage technologies suitable for long duration (tens of hours) and utility scale (hundreds to thousands of MW) applications. It is also one of the most cost-effective solutions for large to small scale storage applications. Compressed Air Energy Storage can be integrated and bring advantages to different levels of the electric system, from the Generation level, to the Transmission and Distribution levels, so in this paper a revisit of CAES is done in order to better understand what and how it can be used for our modern needs of energy storage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Angola, the construction made of raw earth is a cultural heritage widely used by low income households, representing over 80% of the population [1, 3]. In Huila province is evident construction in raw earth in a large scale, either in urban or in periurban and rural areas. The construction methods follow the ancestral standards, distributed throughout the region of Huila, being built by the several ethnic groups. Among the construction techniques in earth, stand out: the adobe, wattle-and-daub and more recently on CEB (Compressed Earth Block). The type of soil used to make the adobes is mainly silty-clayed sand [1]. The most applied materials are: rods, reeds, wood, grass, straw, soil and stone, almost with the same characteristics [2]. The manufacture of adobe, consists essentially in mixing clay and grass (plant fibers), then put the mixture inside a wooden mold, having a size of 42 cm long and 18 cm high and taking three to four days to dry and be applied in housing construction. The application of these materials makes the construction less expensive because they are collected, transformed and applied by the owner himself of housing without any project, based only on the result of the practice and experience acquired from their ancestors. They are simple constructions, presenting a typology of grouped and isolated single-family housing, ranging between 2 and 3 bedrooms [2]. The construction techniques used in such small housings have positive environmental aspects, both as regards the materials employed, such as the manner in which the constructions are raised, showing special concerns for the quality improvement of them, as regards the resistance, durability and comfort [4].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increasing integration of renewable energies in the electricity grid contributes considerably to achieve the European Union goals on energy and Greenhouse Gases (GHG) emissions reduction. However, it also brings problems to grid management. Large scale energy storage can provide the means for a better integration of the renewable energy sources, for balancing supply and demand, to increase energy security, to enhance a better management of the grid and also to converge towards a low carbon economy. Geological formations have the potential to store large volumes of fluids with minimal impact to environment and society. One of the ways to ensure a large scale energy storage is to use the storage capacity in geological reservoir. In fact, there are several viable technologies for underground energy storage, as well as several types of underground reservoirs that can be considered. The geological energy storage technologies considered in this research were: Underground Gas Storage (UGS), Hydrogen Storage (HS), Compressed Air Energy Storage (CAES), Underground Pumped Hydro Storage (UPHS) and Thermal Energy Storage (TES). For these different types of underground energy storage technologies there are several types of geological reservoirs that can be suitable, namely: depleted hydrocarbon reservoirs, aquifers, salt formations and caverns, engineered rock caverns and abandoned mines. Specific site screening criteria are applicable to each of these reservoir types and technologies, which determines the viability of the reservoir itself, and of the technology for any particular site. This paper presents a review of the criteria applied in the scope of the Portuguese contribution to the EU funded project ESTMAP – Energy Storage Mapping and Planning.