3 resultados para CYTOCHROME-B HEAVY

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Currently, the identification of two cryptic Iberian amphibians, Discoglossus galganoi Capula, Nascetti, Lanza, Bullini and Crespo, 1985 and Discoglossus jeanneae Busack, 1986, relies on molecular characterization. To provide a means to discern the distributions of these species, we used 385-base-pair sequences of the cytochrome b gene to identify 54 Spanish populations of Discoglossus. These data and a series of environmental variables were used to build up a logistic regression model capable of probabilistically designating a specimen of Discoglossus found in any Universal Transverse Mercator (UTM) grid cell of 10 km × 10 km to one of the two species. Western longitudes, wide river basins, and semipermeable (mainly siliceous) and sandstone substrates favored the presence of D. galganoi, while eastern longitudes, mountainous areas, severe floodings, and impermeable (mainly clay) or basic (limestone and gypsum) substrates favored D. jeanneae. Fifteen percent of the UTM cells were predicted to be shared by both species, whereas 51% were clearly in favor of D. galganoi and 34% were in favor of D. jeanneae, considering odds of 4:1. These results suggest that these two species have parapatric distributions and allow for preliminary identification of potential secondary contact areas. The method applied here can be generalized and used for other geographic problems posed by cryptic species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Covariant Spectator Theory (CST) is used to calculate the mass spectrum and vertex functions of heavy–light and heavy mesons in Minkowski space. The covariant kernel contains Lorentz scalar, pseudoscalar, and vector contributions. The numerical calculations are performed in momentum space, where special care is taken to treat the strong singularities present in the confining kernel. The observed meson spectrum is very well reproduced after fitting a small number of model parameters. Remarkably, a fit to a few pseudoscalar meson states only, which are insensitive to spin–orbit and tensor forces and do not allow to separate the spin–spin from the central interaction, leads to essentially the same model parameters as a more general fit. This demonstrates that the covariance of the chosen interaction kernel is responsible for the very accurate prediction of the spin-dependent quark–antiquark interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Following up on earlier work on the $q\bar{q}$-bound-state problem using a covariant, chiral-symmetric formalism based upon the Covariant Spectator Theory, we study the heavy–light case for both pseudoscalar and vector mesons. Derived directly in Minkowski space, our approach approximates the full Bethe–Salpeter-equation, taking into account, effectively, the contributions of both ladder and crossed ladder diagrams in the kernel. Results for several mass spectra using a relativistic covariant generalization of a Cornell plus a constant potential to model the interquark interaction are given and discussed.