2 resultados para Blood vascular
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
When blood flows through small vessels, the two-phase nature of blood as a suspension of red cells (erythrocytes) in plasma cannot be neglected, and with decreasing vessel size, a homogeneous continuum model become less adequate in describing blood flow. Following the Haynes’ marginal zone theory, and viewing the flow as the result of concentric laminae of fluid moving axially, the present work provides models for fluid flow in dichotomous branching composed by larger and smaller vessels, respectively. Expressions for the branching sizes of parent and daughter vessels, that provides easier flow access, are obtained by means of a constrained optimization approach using the Lagrange multipliers. This study shows that when blood behaves as a Newtonian fluid, Hess – Murray law that states that the daughters-to-parent diameter ratio must equal to 2^(-1/3) is valid. However, when the nature of blood as a suspension becomes important, the expression for optimum branching diameters of vessels is dependent on the separation phase lengths. It is also shown that the same effect occurs for the relative lengths of daughters and parent vessels. For smaller vessels (e. g., arterioles and capillaries), it is found that the daughters-to-parent diameter ratio may varies from 0,741 to 0,849, and the daughters-to-parent length ratio varies from 0,260 to 2,42. For larger vessels (e. g., arteries), the daughters-to-parent diameter ratio and the daughters-to-parent length ratio range from 0,458 to 0,819, and from 0,100 to 6,27, respectively. In this paper, it is also demonstrated that the entropy generated when blood behaves as a single phase fluid (i. e., continuum viscous fluid) is greater than the entropy generated when the nature of blood as a suspension becomes important. Another important finding is that the manifestation of the particulate nature of blood in small vessels reduces entropy generation due to fluid friction, thereby maintaining the flow through dichotomous branching vessels at a relatively lower cost.
Resumo:
The functional and structural performance of a 5 cm synthetic small diameter vascular graft (SDVG) produced by the copolymerization of polyvinyl alcohol hydrogel with low molecular weight dextran (PVA/Dx graft) associated to mesenchymal stem cells (MSCs)-based therapies and anticoagulant treatment with heparin, clopidogrel and warfarin was tested using the ovine model during the healing period of 24 weeks. The results were compared to the ones obtained with standard expanded polyetetrafluoroethylene grafts (ePTFE graft). Blood flow, vessel and graft diameter measurements, graft appearance and patency rate (PR), thrombus, stenosis and collateral vessel formation were evaluated by B-mode ultrasound, audio and color flow Doppler. Graft and regenerated vessels morphologic evaluation was performed by scanning electronic microscopy (SEM), histopathological and immunohistochemical analysis. All PVA/Dx grafts could maintain a similar or higher PR and systolic / diastolic laminar blood flow velocities were similar to ePTFE grafts. CD14 (macrophages) and α-actin (smooth muscle) staining presented similar results in PVA/Dx/MSCs and ePTFE graft groups. Fibrosis layer was lower and endothelial cells were only detected at graft-artery transitions where it was added the MSCs. In conclusion, PVA/Dx graft can be an excellent scaffold candidate for vascular reconstruction, including clinic mechanically challenging applications, such as SDVGs, especially when associated to MSCs-based therapies to promote higher endothelialization and lower fibrosis of the vascular prosthesis, but also higher PR values.