3 resultados para Blocks of brick

em Repositório Científico da Universidade de Évora - Portugal


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study examines the long profiles of tributaries of the Tejo (Tagus) and Zêzere rivers in central eastern Portugal (West Iberia) in order to provide new insights into the patterns, timing and controls on drainage development during the Pleistocene to Holocene incision stage. The long profiles were extracted from lower order tributary streams associated with the trunk drainage of the Tejo River and one main tributary, the Zêzere River (Fig. 1). These streams flow through a landscape strongly influenced by variations in bedrock lithology (mainly granites and metasediments), fault structures delimiting crustal blocks with distinct uplift rates, and a base-level lowering history (tectonic uplift / eustatic). The long profiles of the tributaries of the Tejo and Zêzere rivers record a series of transient and permanent knickpoints. The permanent knickpoints have direct correlation with the bedrock strength, corresponding to the outcropping of very hard quartzites or to the transition from softer (slates/metagreywaques) to harder (granite) basement. The analyzed streams/rivers record also an older transient knickpoint/knickzone separating: a) an upstream relict graded profile, with lower steepness and higher concavity, that reflects a long period of quasi-equilibrium conditions reached after the beginning of the incision stage; and b) a downstream reach displaying a rejuvenated long profile, with steeper gradient and lower concavity, particularly for the final segment, which is often convex (Fig. 2). The rejuvenated reaches testify the upstream propagation of several incision waves that are the response of each stream to continuous or increasing crustal uplift and dominant periods of base-level lowering by the trunk drainages, coeval of low sea level conditions. The long profiles and their morphological configurations enabled spatial and relative temporal patterns of incision to be quantified for each individual tributary stream. The incision values of streams flowing in uplifted blocks of the Portuguese Central Range (PCR) (ca.380-280 m) indicate differential uplift and are higher than the incision values of streams flowing on the adjacent South Portugal planation surface â the Meseta (ca. 200 m). The normalized steepness index, calculated using the method of Wobus et al. (2006), proved to be sensitive to active tectonics, as lower ksn values were found in relict graded profiles of streams located in less uplifted blocks, (e.g. Sertã stream in the PCR), or in those flowing through tectonic depressions. Fig. 1 â Geological map of the study area. 1 â fluvial terraces (Pleistocene); 2 â sedimentary cover (Paleogene and Neogene); 3 â slates and metasandstones (Devonian); 4 â slates and quartzites (Silurian); 5 â quartzites (Ordovician); 6 â slates and metagreywackes (Precambrian to Cambrian); 7 â slates, metagreywackes and limestones (Precambrian); 8 â granites and ortogneisses; 9 â diorites and gabros; 10 - fault. SFf â Sobreira Formosa fault; Sf â Sertã fault; Pf â Ponsul fault; Gf â Grade fault. The differential uplift indicated by the distribution of the ksn values and by the fluvial incision was likely accumulated on a few major faults, as the Sobreira Formosa fault (SFf), thus corroborating the tectonic activity of these faults. Due to the fact that the relict graded profiles can be correlated with other geomorphic references documented in the study area, namely the T1 terrace of the Tagus River (with an age of ca. 1 Myr), the following incision rates can be estimated: a) for the studied streams located in uplifted blocks of the PCR, 0.38 m/kyr to 0.28 m/kyr; b) for the streams flowing on the South Portugal planation surface, 0.20 m/kyr. The differential uplift inferred between crustal blocks in the study area corroborates the neotectonic activity of the bordering faults, which has been proposed in previous studies based upon less robust data. Fig. 2 â Longitudinal profile of the Nisa stream a tributary of the Tejo River. Note the equilibrium relict profile upstream the older transient knickpoint (hatched line) and the downstream rejuvenated profile (continuous line). Legend: tKP â transient knickpoint; rKp â resistant knickpoint; Mt â schist and phyllite; Gr â granite; Hf â hornfels; Og â orthogneisse. In the inset Distance â Slope plots, fill circles correspond to the relict graded profile, crosses correspond to the rejuvenated profile located downstream the older transient knickpoint (tKP).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Cognitive Assessment System (CAS) is a new measure of cognitive abilities based on the Planning, Attention, Simultaneous and Successive (PASS) Theory. This theory is derived from research in neuropsychological and cognitive Psychology with particular emphasis on the work of Luria (1973). According to Naglieri (1999) and Naglieri and Das (1997), the PASS cognitive processes are the basic building blocks of human intellectual functioning. Planning processes provide cognitive control, utilization of processes and knowledge, intentionality, and self-regulation to achieve a desired goal; Attention processes provide focused, selective cognitive activity and resistance to distraction; and, Simultaneous and Successive processes are the two forms of operating on information. The PASS theory has had a strong empirical base prior to the publication of the CAS (see Das, Naglieri & Kirby, 1994), and its research foundation remains strong (see Naglieri, 1999; Naglieri & Das, 1997). The four basic psychological processes can be used to (1) gain an understanding of how well a child thinks; (2) discover the childâs strengths and needs, which can then be used for effective differential diagnosis; (3) conduct fair assessment; and (4) select or design appropriate interventions. Compared to the traditional intelligence tests, including IQ tests, the Cognitive Assessment System (CAS) has the great advantage of relying on a modern theory of cognitive functioning, linking theory with practice.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Despite significant advances in building technologies with the use of conventional construction materials (as concrete and steel), which significantly have driven the construction industry, earth construction have demonstrated its importance and relevance, as well as it has matched in an efficient and eco-friendly manner the social housing concerns. The diversity of earth construction techniques allowed this material to adapt to different climatic, cultural and social contexts until the present time. However, in Angola, the construction with earth is still associated with population fringes of weak economic resources, for which, given the impossibility of being able to acquire modern construction materials (steel, cement, brick, among others), they resort to the use of available natural materials. Furthermore, the lack of scientific and technical knowledge justifies the negative appreciation of traditional building techniques, and the derogatory way how are considered the earth constructions in Angolan territory. Given the country's current development status, and taking into account the environmental requirements and the real socio-economic sustainability of Angola, it is considered that one of the viable and adequate options, could be the recovering and upgrading of the ancestral techniques of earth construction. The purpose of this research is to develop the technical and scientific knowledge in order to improve and optimize these construction solutions, responding to the real problems of housing quality as well as to the current social, economic and environmental sustainability requirements. In this paper, a description of the physical and mechanical characteristics of the adobes typically used in the construction of traditional houses in some localities of Huambo, province in Angola, is carried out. The methodology was based on mechanical in-situ testing in adobe blocks manufactured with traditional procedures: i) tensile strength evaluated with the bending test and compressive strength test on earth blocks specimens; and, ii) durability and erodibility test by Geelong method adopting the New Zealand standard (NZS) procedures (4297: 1998; 4297: 1998 and 4297: 1999). The results allow the characterization of the materials used in the construction of raw earth in the Huambo region, contributing to the development of knowledge of these sustainable and traditional housing constructive solutions with a strong presence in Angola [1, 2]. This study is part of a larger project in the area of Earth Construction [3], which aims to produce knowledge which can stimulate the use of environmental friendly construction materials and contribute to develop constructive solutions with improved performance, durability, comfort, safety and sustainability.