7 resultados para Ballasts (Electricity)
em Repositório Científico da Universidade de Évora - Portugal
Resumo:
This paper deals with the problem of coordinated trading of wind and photovoltaic systems in order to find the optimal bid to submit in a pool-based electricity market. The coordination of wind and photovoltaic systems presents uncertainties not only due to electricity market prices, but also with wind and photovoltaic power forecast. Electricity markets are characterized by financial penalties in case of deficit or excess of generation. So, the aim o this work is to reduce these financial penalties and maximize the expected profit of the power producer. The problem is formulated as a stochastic linear programming problem. The proposed approach is validated with real data of pool-based electricity market of Iberian Peninsula.
Resumo:
The variability in non-dispatchable power generation raises important challenges to the integration of renewable energy sources into the electricity power grid. This paper provides the coordinated trading of wind and photovoltaic energy to mitigate risks due to the wind and solar power variability, electricity prices, and financial penalties arising out the generation shortfall and surplus. The problem of wind-photovoltaic coordinated trading is formulated as a linear programming problem. The goal is to obtain the optimal bidding strategy that maximizes the total profit. The wind-photovoltaic coordinated operation is modeled and compared with the uncoordinated operation. A comparison of the models and relevant conclusions are drawn from an illustrative case study of the Iberian day-ahead electricity market.
Resumo:
The variability in non-dispatchable power generation raises important challenges to the integration of renewable energy sources into the electricity power grid. This paper provides the coordinated trading of wind and photovoltaic energy assisted by a cyber-physical system for supporting management decisions to mitigate risks due to the wind and solar power variability, electricity prices, and financial penalties arising out the generation shortfall and surplus. The problem of wind-photovoltaic coordinated trading is formulated as a stochastic linear programming problem. The goal is to obtain the optimal bidding strategy that maximizes the total profit. The wind-photovoltaic coordinated operation is modelled and compared with the uncoordinated operation. A comparison of the models and relevant conclusions are drawn from an illustrative case study of the Iberian day-ahead electricity market.
Resumo:
This paper proposes a process for the classifi cation of new residential electricity customers. The current state of the art is extended by using a combination of smart metering and survey data and by using model-based feature selection for the classifi cation task. Firstly, the normalized representative consumption profi les of the population are derived through the clustering of data from households. Secondly, new customers are classifi ed using survey data and a limited amount of smart metering data. Thirdly, regression analysis and model-based feature selection results explain the importance of the variables and which are the drivers of diff erent consumption profi les, enabling the extraction of appropriate models. The results of a case study show that the use of survey data signi ficantly increases accuracy of the classifi cation task (up to 20%). Considering four consumption groups, more than half of the customers are correctly classifi ed with only one week of metering data, with more weeks the accuracy is signifi cantly improved. The use of model-based feature selection resulted in the use of a signifi cantly lower number of features allowing an easy interpretation of the derived models.
Resumo:
In the last decade of the 19th and first decades of the 20th century there was a movement of capital and engineers from the central and northern Europe to the countries of southern Europe and other continents. Large companies sought to obtain concessions and establish branches in Portugal, favouring the circulation of technical knowledge and transfer of technology for Portuguese industry. Among the various examples of the representatives of foreign companies in Portugal we find Jayme da Costa Ltd. established in 1916 in Lisbon, which was a branch of the Swedish company ASEA, as well as STAAL, ATLAS DIESEL (Sweden), Landis & GYR (Switzerland), Electro Helios, etc.. Another example is EFACEC a company founded in 1948 in Porto, that was a partnership between the Portuguese company CUF – Companhia União Fabril, and ACEC – Ateliers de Constructions Électriques de Charleroi and a small entreprise Electro-Moderna Ldª. This enterprise started the industrial production of electric motors and transformers, and later on acquired a substantial share of the national production of electrical equipment. Using Estatística das Instalações Elétricas em Portugal (Statistics on Electrical Installations in Portugal) from 1928 until 1950 we can identify the foreign enterprises acting in the Portuguese market: Siemens, B.B.C, ASEA, Oerlikon, etc. We can also establish a relationship between the development of the electric network and the growth of production and consumption of electricity in the principal urban centres. Finally we see how foreign firms were a stimulus to the creation of national enterprises, especially those of small scale, in Portugal.
Resumo:
This paper presents a methodology for short-term load forecasting based on genetic algorithm feature selection and artificial neural network modeling. A feed forward artificial neural network is used to model the 24-h ahead load based on past consumption, weather and stock index data. A genetic algorithm is used in order to find the best subset of variables for modeling. Three data sets of different geographical locations, encompassing areas of different dimensions with distinct load profiles are used in order to evaluate the methodology. The developed approach was found to generate models achieving a minimum mean average percentage error under 2 %. The feature selection algorithm was able to significantly reduce the number of used features and increase the accuracy of the models.
Resumo:
This chapter aims to develop a new method for the economical evaluation of Hybrid Systems for electricity production. The different types of renewable sources are specifically evaluated in the economical performance of the overall equipment. The presented methodology was applied to evaluate the design of a photovoltaic-wind-diesel hybrid system to produce electricity for a community in the neighbourhood of Luanda, Angola. Once the hybrid generator is selected, it is proposed to provide the system with a supervisory control strategy to maximize its operating efficiency.